Skip to main content
Log in

A dual-based stochastic inexact algorithm for a class of stochastic nonsmooth convex composite problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, a dual-based stochastic inexact algorithm is developed to solve a class of stochastic nonsmooth convex problems with underlying structure. This algorithm can be regarded as an integration of a deterministic augmented Lagrangian method and some stochastic approximation techniques. By utilizing the sparsity of the second order information, each subproblem is efficiently solved by a superlinearly convergent semismooth Newton method. We derive some almost surely convergence properties and convergence rate of objective values. Furthermore, we present some results related to convergence rate of distance between iteration points and solution set under error bound conditions. Numerical results demonstrate favorable comparison of the proposed algorithm with some existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The datasets cina0, sido0, lucap0, lucas and reged are available from http://www.causality.inf.ethz.ch/challenge.php?page=datasets#cont. The rest datasetes w8a, mushrooms, pyrim, bodyfat, housing, australian, rcv1, real-sim and covtype are available from the LIBSVM data repository: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

References

  1. Allen-Zhu Z.: Natasha: Faster non-convex stochastic optimization via strongly non-convex parameter. In: International Conference on Machine Learning, vol. 70, pp. 89–97, PMLR Press (2017)

  2. Asi, H., Duchi, J.C.: Stochastic (approximate) proximal point methods: convergence, optimality, and adaptivity. SIAM. J. Optim. 29(3), 2257–2290 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Asi, H., Duchi, J.C.: The importance of better models in stochastic optimization. Proc. Natl. Acad. Sci. USA 116, 22924–22930 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Atchaé, Y.F., Fort, G., Moulines, E.: On perturbed proximal gradient algorithms. J. Mach. Learn. Res. 18(1), 1–33 (2017)

    MathSciNet  Google Scholar 

  5. Bertsekas, D.: Convex Optimization Algorithms. Athena Scientific (2015)

    MATH  Google Scholar 

  6. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM Rev. 60(2), 223–311 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, University City (1990)

    MATH  Google Scholar 

  8. Combettes P.L., Pesquet J.C.: Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer-Verlag, New York, pp. 185–212 (2011)

  9. Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM J. Optim. 29, 207–239 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 1646–1654. Curran Associates, Inc. (2014)

    Google Scholar 

  11. Demirer, M., Diebold, F.X., Liu, L., Yilmaz, K.: Estimating global bank network connectedness. J. Appl. Econom. 33(1), 1–15 (2018)

    MathSciNet  Google Scholar 

  12. Fu, C., Fu, C., Michael, M.: Handbook of Simulation Optimization. International Series in Operations Research and Management Science. Springer-Verlag, New York (2015)

    Google Scholar 

  13. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization I: a generic algorithmic framework. SIAM J. Optim. 22(4), 1469–1492 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization II: shrinking procedures and optimal algorithms. SIAM J. Optim. 23(4), 2061–2089 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Math. Program. 155(1–2), 267–305 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Goebel, R., Rockafellar, R.T.: Local strong convexity and local Lipschitz continuity of the gradient of convex functions. J. Convex Anal. 15, 263–270 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Jalilzadeh A., Shanbhag U.V., Blanchet J.H., Glynn P.W.: Smoothed variable sample-size accelerated proximal methods for nonsmooth stochastic convex programs. https://arxiv.org/pdf/1803.00718.pdf (2020)

  18. Jofré, A., Thompson, P.: On variance reduction for stochastic smooth convex optimization with multiplicative noise. Math. Program. 174(1–2), 253–292 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Lan, G.: An optimal method for stochastic composite optimization. Math. Program. 133(1), 365–397 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Lan, G.: First-order and Stochastic Optimization Methods for Machine Learning. Springer-Verlag, New York (2020)

    MATH  Google Scholar 

  21. Lei, J., Shanbhag, U.V.: Asynchronous variance-reduced block schemes for composite non-convex stochastic optimization: block-specific steplengths and adapted batch-sizes. Optim. Methods Softw. 0, 1–31 (2020)

    MATH  Google Scholar 

  22. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Google Scholar 

  23. Lin, M., Liu, Y.J., Sun, D., Toh, K.C.: Efficient sparse semismooth Newton methods for the clustered lasso problem. SIAM J. Optim. 29(3), 2026–2052 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Li, X., Sun, D., Toh, K.C.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM J. Optim. 28(1), 433–458 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Lin M., Yuan Y., Sun D., Toh K.C.: Adaptive sieving with PPDNA: generating solution paths of exclusive lasso models, https://arxiv.org/pdf/2009.08719.pdf (2020)

  26. Li, X., Sun, D., Toh, K.C.: On efficiently solving the subproblems of a level-set method for fused Lasso problems. SIAM J. Optim. 28(2), 1842–1866 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Luo, Z., Sun, D., Toh, K.C., Xiu, N.: Solving the OSCAR and SLOPE models using a semismooth Newton-based augmented Lagrangian method. J. Mach. Learn. Res. 20(106), 1–25 (2019)

    MathSciNet  MATH  Google Scholar 

  28. McCann, M., Li, Y., Maguire, L., Johnston, A.: Causality challenge: benchmarking relevant signal components for effective monitoring and process control. In: Causality: Objectives and Assessment, pp 277–288, PMLR (2010)

  29. Milzarek, A., Xiao, X., Cen, S., Wen, Z., Ulbrich, M.: A stochastic semismooth Newton method for nonsmooth nonconvex optimization. SIAM J. Optim. 29(4), 2916–2948 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Milzarek, A., Xiao, X., Wen, Z., Ulbrich, M.: On the local convergence of a stochastic semismooth Newton method for nonsmooth nonconvex optimization. Sci. China Math. 65, 2151–2170 (2022)

    MathSciNet  MATH  Google Scholar 

  31. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    MathSciNet  MATH  Google Scholar 

  32. Pătraşcu, A., Necoara, I.: Nonasymptotic convergence of stochastic proximal point methods for constrained convex optimization. J. Mach. Learn. Res. 18(1), 1–42 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Pham, N.H., Nguyen, L.M., Phan, D.T., Tran-Dinh, Q.: ProxSARAH: an efficient algorithmic framework for stochastic composite nonconvex optimization. J. Mach. Learn. Res. 21(110), 1–48 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Reddi S.J., Sra S., Póczos B., Smola A.J.: Proximal stochastic methods for nonsmooth nonconvex finite-sum optimization. In: Advance in Neural Information Processing Systems, vol. 29, pp. 1145–1153, MIT Press, Cambridge (2016)

  35. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  36. Robbins H.,Siegund D.: A convergence theorem for non-negative almost supermartingales and some applications. In: Rustagi, J.S. (ed.), Optimizing Methods in Statistics (Proceedings of a Symposium at Ohio State University, Columbus, Ohio), Academic, pp. 233-257 (1971)

  37. Rosasco, L., Villa, S., Vũ, B.C.: Convergence of stochastic proximal gradient algorithm. Appl. Math. Optim. 82, 891–917 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    MathSciNet  MATH  Google Scholar 

  39. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  40. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    MathSciNet  MATH  Google Scholar 

  41. Rockafellar, R.T., Wets, R.: Variational Analysis. Springer Science & Business Media (2009)

    MATH  Google Scholar 

  42. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, New York (2014)

    MATH  Google Scholar 

  43. Shalev-Shwartz, S., Zhang, T.: Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. Math. Program. 155(1–2), 105–145 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Shi Z., Liu R.: Large scale optimization with proximal stochastic Newton-type gradient descent. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 691–704, Springer, Cham (2015)

  45. Tang, P., Wang, C., Sun, D., Toh, K.C.: A sparse semismooth Newton based proximal majorization-minimization algorithm for nonconvex square-root-loss regression problems. J. Mach. Learn. Res. 21(226), 1–38 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  47. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Science and Business Media, New York (2013)

    MATH  Google Scholar 

  48. Wang, M.D., Bertsekas, D.P.: Stochastic first-order methods with random constraint projection. SIAM J. Optim. 26(1), 681–717 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Wang, X., Yuan, Y.X.: Stochastic proximal quasi-Newton methods for non-convex composite optimization. Optim. Methods Softw. 34, 922–948 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Wang, J., Zhang, T.: Utilizing second order information in minibatch stochastic variance reduced proximal iterations. J. Mach. Learn. Res. 20(42), 1–56 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Xiao, X.: A unified convergence analysis of stochastic Bregman proximal gradient and extragradient methods. J. Optim. Theory Appl. 188(3), 605–627 (2021)

    MathSciNet  MATH  Google Scholar 

  52. Xiao, L., Zhang, T.: A proximal stochastic gradientmethod with progressive variance reduction. SIAM J. Optim. 24(4), 2057–2075 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Yang, M., Milzarek, A., Wen, Z., Zhang, T.: A stochastic extra-step quasi-Newton method for nonsmooth nonconvex optimization. Math. Program. 194(1–2), 257–303 (2022)

    MathSciNet  MATH  Google Scholar 

  54. Ye, J.J., Yuan, X., Zeng, S., Zhang, J.: Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems. Set-Valued Var. Anal. 29(4), 803–837 (2021)

    MathSciNet  MATH  Google Scholar 

  55. Zhang N.: A dual based semismooth Newton method for a class of sparse Tikhonov regularization. arXiv:2006.08188 (2020)

  56. Zhang, Y., Zhang, N., Sun, D., Toh, K.C.: An efficient Hessian based algorithm for solving large-scale sparse group Lasso problems. Math. Program. 179, 223–263 (2020)

    MathSciNet  MATH  Google Scholar 

  57. Zou, H., Hastie, T.L.: Regularization and variable selection via the elastic net. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the associate editor and two anonymous referees for their helpful suggestions and remarks that allowed us to improve the original presentation significantly. The alphabetical order of the authors indicates their equal contributions to the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Ping Yang or Jin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by NSFC (Nos. 12101262, 12071280, 11971220, 12222106), Guangdong Basic and Applied Basic Research Foundation (Nos. 2022A1515010263, 2022B1515020082), and Shenzhen Science and Technology Program (No. RCYX20200714114700072).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, GH., Yang, ZP., Yin, HA. et al. A dual-based stochastic inexact algorithm for a class of stochastic nonsmooth convex composite problems. Comput Optim Appl 86, 669–710 (2023). https://doi.org/10.1007/s10589-023-00504-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-023-00504-0

Keywords

Mathematics Subject Classification

Navigation