Skip to main content
Log in

The deepest event cuts in risk-averse optimization with application to radiation therapy design

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Our study is motivated by radiation therapy design for cancer treatment. We consider large-scale problems with stochastic order constraints. We establish a general result about the form of the deepest cuts associated with events of positive probability which are used in the numerical approximation of the functional constraints. An efficient method using the deepest cuts is proposed for the numerical solution of problems with second-order dominance constraints and increasing convex order constraints. We the propose a new methodology for the radiation-therapy design for cancer treatment. We introduce a risk-averse optimization problem with two types of stochastic order relations and with coherent measures of risk and consider the effect of the risk models in three versions of the problem formulation. Additionally, we propose a method that creates flexible (floating) benchmark distributions when benchmark distributions are not given apriori or when the provided distributions lead to infeasibility. We devise a numerical method using floating benchmarks for solving the proposed risk-averse optimization models for radiation therapy design. The models and methods are verified by using clinical data confirming the viability of the proposed methodology and its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility

The dataset used in the current study is not publicly available as it contains clinical data.

References

  1. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, Chichester (2002)

    MATH  Google Scholar 

  2. Ogryczak, W., Ruszczyński, A.: From stochastic dominance to mean-risk models: semideviations as risk measures. Eur. J. Oper. Res. 116, 33–50 (1999)

    MATH  Google Scholar 

  3. Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints. SIAM J. Optim. 14, 548–566 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Dentcheva, D., Ruszczyński, A.: Convexification of stochastic ordering. Comptes Rendus de l’Academie Bulgare des Sciences 57, 11–16 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Dentcheva, D., Ruszczyński, A.: Semi-infinite probabilistic optimization: first order stochastic dominance constraints. Optimization 53, 583–601 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Dentcheva, D., Martinez, G.: Two-stage stochastic optimization problems with stochastic ordering constraints on the recourse. Eur. J. Oper. Res. 219, 1–8 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Lorenz, O.: Methods of measuring concentration of wealth. J. Am. Stat. Assoc. 9, 209–219 (1905)

    Google Scholar 

  8. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)

    MathSciNet  MATH  Google Scholar 

  9. Gastwirth, J.L.: A general definition of the Lorenz curve. Econometrica 39, 1037–1039 (1971)

    MATH  Google Scholar 

  10. Mosler, K., Scarsini, M.: Stochastic Orders and Decision Under Risk. Institute of Mathematical Statistics, Hayward (1991)

    MATH  Google Scholar 

  11. Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean risk models. SIAM J. Optim. 13, 60–78 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Greselin, F., Puri, M.L., Zitikis, R.: L-functions, processes, and statistics in measuring economic inequality and actuarial risks. Stat. Interface 2(2), 227–245 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory (3rd. Ed.) vol. 28. SIAM, (2021)

  14. Dentcheva, D., Ruszczyński, A.: Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints. Math. Program. 99, 329–350 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Dentcheva, D., Ruszczyński, A.: Inverse stochastic dominance constraints and rank dependent expected utility theory. Math. Program. 108, 297–311 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Dentcheva, D., Ruszczyński, A.: Duality between coherent risk measures and stochastic dominance constraints in risk-averse optimization. Pacific J. Optim. 4(3), 433–446 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Luedtke, J.: New formulations for optimization under stochastic dominance constraints. SIAM J. Optim. 19(3), 1433–1450 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Rudolf, G., Ruszczyński, A.: Optimization problems with second order stochastic dominance constraints: duality, compact formulations, and cut generation methods. SIAM J. Optim. 19, 1326–1343 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Fábián, C.I., Mitra, G., Roman, D.: Processing second-order stochastic dominance models using cutting-plane representations. Math. Program. 130, 33–57 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Dentcheva, D., Ruszczyński, A.: Inverse cutting plane methods for optimization problems with second-order stochastic dominance constraints. Optimization 59, 323–338 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Sun, H., Xu, H., Meskarian, R., Wang, Y.: Exact penalization, level function method, and modified cutting-plane method for stochastic programs with second order stochastic dominance constraints. SIAM J. Optim. 23(1), 602–631 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Dentcheva, D., Martinez, G., Wolfhagen, E.: Augmented Lagrangian methods for solving optimization problems with stochastic-order constraints. Oper. Res. 64(6), 1451–1465 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Rockafellar, R.T.: Conjugate Duality and Optimization vol. 16. SIAM, (1974)

  24. Prékopa, A.: Stochastic Programming. Kluwer Acad. Publ, Dordrecht, Boston (1995)

    MATH  Google Scholar 

  25. Bortfeld, T., Bürkelbach, J., Boesecke, R., Schlegel, W.: Methods of image reconstruction from projections applied to conformation radiotherapy. Phys. Med. Biol. 35(10), 1423 (1990)

    Google Scholar 

  26. Holmes, T., Mackie, T.R.: A filtered backprojection dose calculation method for inverse treatment planning. Med. Phys. 21(2), 303–313 (1994)

    Google Scholar 

  27. Xing, L., Chen, G.T.: Iterative methods for inverse treatment planning. Phys. Med. Biol. 41(10), 2107 (1996)

    Google Scholar 

  28. Shepard, D.M., Olivera, G.H., Reckwerdt, P.J., Mackie, T.R.: Iterative approaches to dose optimization in tomotherapy. Phys. Med. Biol. 45(1), 69 (2000)

    Google Scholar 

  29. Webb, S.: Optimisation of conformal radiotherapy dose distribution by simulated annealing. Phys. Med. Biol. 34(10), 1349 (1989)

    Google Scholar 

  30. Mageras, G.S., Mohan, R.: Application of fast simulated annealing to optimization of conformal radiation treatments. Med. Phys. 20(3), 639–647 (1993)

    Google Scholar 

  31. Rosen, I.I., Lam, K.S., Lane, R.G., Langer, M., Morrill, S.M.: Comparison of simulated annealing algorithms for conformal therapy treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 33(5), 1091–1099 (1995)

    Google Scholar 

  32. Hamacher, H.W., Küfer, K.-H.: Inverse radiation therapy planning-a multiple objective optimization approach. Discret. Appl. Math. 118(1), 145–161 (2002)

    MathSciNet  MATH  Google Scholar 

  33. Bortfeld, T., Küfer, K.H., Monz, M., Scherrer, A., Thieke, C., Trinkhaus, H.: Intensity-modulated Radiotherapy-a Large Scale Multi-criteria Programming Problem. Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer (ITWM), (2003)

  34. Bortfeld, T., Stein, J., Preiser, K.: Clinically relevant intensity modulation optimization using physical criteria. in Proceedings of XIIth International Conference on Use of Computers in Radiation Therapy, pp. 1–4 (1997)

  35. Spirou, S.V., Chui, C.-S.: A gradient inverse planning algorithm with dose-volume constraints. Med. Phys. 25(3), 321–333 (1998)

    Google Scholar 

  36. Wu, Q., Mohan, R.: Algorithms and functionality of an intensity modulated radiotherapy optimization system. Med. Phys. 27(4), 701–711 (2000)

    Google Scholar 

  37. Oelfke, U., Bortfeld, T.: Inverse planning for photon and proton beams. Med. Dosim. 26(2), 113–124 (2001)

    Google Scholar 

  38. Langer, M., Brown, R., Urie, M., Leong, J., Stracher, M., Shapiro, J.: Large scale optimization of beam weights under dose-volume restrictions. Int. J. Rad. Oncol. Biol. Phys. 18(4), 887–893 (1990)

    Google Scholar 

  39. Lee, E.K., Fox, T., Crocker, I.: Integer programming applied to intensity-modulated radiation therapy treatment planning. Ann. Oper. Res. 119(1–4), 165–181 (2003)

    MATH  Google Scholar 

  40. Wu, Q., Mohan, R.: Multiple local minima in IMRT optimization based on dose-volume criteria. Med. Phys. 29(7), 1514–1527 (2002)

    Google Scholar 

  41. Llacer, J., Deasy, J.O., Bortfeld, T.R., Solberg, T.D., Promberger, C.: Absence of multiple local minima effects in intensity modulated optimization with dose-volume constraints. Phys. Med. Biol. 48(2), 183 (2003)

    Google Scholar 

  42. Wu, C., Jeraj, R., Mackie, T.R.: The method of intercepts in parameter space for the analysis of local minima caused by dose-volume constraints. Phys. Med. Biol. 48(11), 149 (2003)

    Google Scholar 

  43. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A new linear programming approach to radiation therapy treatment planning problems. Oper. Res. 54(2), 201–216 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Kishimoto, S., Yamashita, M.: A successive lp approach with c-var type constraints for IMRT optimization. Oper. Res. Health Care 17, 55–64 (2018)

    Google Scholar 

  45. Unkelbach, J., Alber, M., Bangert, M., Bokrantz, R., Chan, T.C.Y., Deasy, J.O., Fredriksson, A., Gorissen, B.L., Van Herk, M., Liu, W.: Robust radiotherapy planning. Phys. Med. Biol. 63(22), 22TR02 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. Ning J. Yue, Department of Radiation Oncology, The Rutgers University Robert–Wood–Johnson Medical School, for kindly providing us with clinical data for the experiments. We are also grateful to the three anonymous referees whose critics helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darinka Dentcheva.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

This paper is dedicated to Asen Dontchev, with gratitude for his mentorship and in appreciation of his fundamental contributions to the theory of optimization and control.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitt, C.A., Dentcheva, D., Ruszczyński, A. et al. The deepest event cuts in risk-averse optimization with application to radiation therapy design. Comput Optim Appl 86, 1347–1372 (2023). https://doi.org/10.1007/s10589-023-00531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-023-00531-x

Keywords

Navigation