Skip to main content
Log in

Accelerated forward–backward algorithms for structured monotone inclusions

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we develop rapidly convergent forward–backward algorithms for computing zeroes of the sum of two maximally monotone operators. A modification of the classical forward–backward method is considered, by incorporating an inertial term (closed to the acceleration techniques introduced by Nesterov), a constant relaxation factor and a correction term, along with a preconditioning process. In a Hilbert space setting, we prove the weak convergence to equilibria of the iterates \((x_n)\), with worst-case rates of \( o(n^{-1})\) in terms of both the discrete velocity and the fixed point residual, instead of the rates of \(\mathcal {O}(n^{-1/2})\) classically established for related algorithms. Our procedure can be also adapted to more general monotone inclusions. In particular, we propose a fast primal-dual algorithmic solution to some class of convex-concave saddle point problems. In addition, we provide a well-adapted framework for solving this class of problems by means of standard proximal-like algorithms dedicated to structured monotone inclusions. Numerical experiments are also performed so as to enlighten the efficiency of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility

We do not analyse or generate any datasets, because our work proceeds within a theoretical and mathematical approach. One can obtain the relevant materials from the references below.

References

  1. Attouch, H., Cabot, A.: Convergence of a relaxed inertial forward–backward algorithm for structured monotone inclusions. Appl. Math. Optim. 80, 547–598 (2019)

    MathSciNet  Google Scholar 

  2. Attouch, H., László, S.C.: Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators. SIAM J. Optim. 30(4), 3252–3283 (2020)

    MathSciNet  Google Scholar 

  3. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward–backward method is actually faster than \(1/k^{2}\). SIAM J. Optim. 26(3), 1824–1834 (2016)

    MathSciNet  Google Scholar 

  4. Attouch, H., Peypouquet, J.: Convergence of inertial dynamics and proximal algorithms governed by maximal monotone operators. Math. Program. 174, 391–432 (2019)

    MathSciNet  Google Scholar 

  5. Attouch, H., Peypouquet, J., Redont, P.: Fast convex optimization via inertial dynamics with hessian driven damping. J. Differ. Equ. 261(10), 5734–5783 (2016)

    MathSciNet  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2017)

    Google Scholar 

  7. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    MathSciNet  Google Scholar 

  8. Bot, R.I., Sedlmayer, M., Vuong, P.T.: A relaxed inertial forward–backward–forward algorithm for solving monotone inclusions with application to GANs. CoRR arXiv:2003.07886 (2020)

  9. Brezis, H.: Opérateurs Maximaux Monotones. Math. Stud., vol. 5. North-Holland, Amsterdam (1973)

    Google Scholar 

  10. Brezis, H., Lions, P.L.: Produits infinis de résolvantes. Isr. J. Math. 29, 329–345 (1978)

    Google Scholar 

  11. Cevher, V., Vu, B.C.: A reflected forward–backward splitting method for monotone inclusions involving Lipschitzian operators. Set-Valued Var. Anal. (2020). https://doi.org/10.1007/s11228-020-00542-4

    Article  Google Scholar 

  12. Chambolle, A., Dossal, C.: On the convergence of the iterates of Fista. JOTA 166(3), 968–982 (2015)

    Google Scholar 

  13. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    MathSciNet  Google Scholar 

  14. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20(2), 307–330 (2012)

    MathSciNet  Google Scholar 

  15. Combettes, P.L., Wajs, V.: Signal recovery by proximal forward–backward splitting. SIAM Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    MathSciNet  Google Scholar 

  16. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    MathSciNet  Google Scholar 

  17. Corman, E., Yuan, X.: A generalized proximal point algorithm and its convergence rate. SIAM J. Optim. 24(4), 1614–1638 (2014)

    MathSciNet  Google Scholar 

  18. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    MathSciNet  Google Scholar 

  19. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    MathSciNet  Google Scholar 

  20. Drori, Y., Teboulle, M.: Performance of first-order methods for smooth convex minimization: a novel approach. Math. Program. 145(1–2), 451–482 (2014)

    MathSciNet  Google Scholar 

  21. Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)

    MathSciNet  Google Scholar 

  22. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)

    MathSciNet  Google Scholar 

  23. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    MathSciNet  Google Scholar 

  24. Güler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2(4), 649–664 (1992)

    MathSciNet  Google Scholar 

  25. Kim, D.: Accelerated proximal point method for maximally monotone operators. Math. Program. 190, 57–87 (2021). https://doi.org/10.1007/s10107-021-01643-0

    Article  MathSciNet  Google Scholar 

  26. Labarre, F.: Approche numérique de problèmes d’optimisation et applications. PhD thesis, University of Antilles (2021)

  27. Lemaire, B.: The proximal algorithm. In: Penot, J.P. (ed.) New Methods in Optimization and Their Industrial Uses. Internat. Ser. Numer. Math., vol. 87, pp. 73–87. Birkhauser, Basel (1989)

    Google Scholar 

  28. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    MathSciNet  Google Scholar 

  29. Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311–325 (2015)

    MathSciNet  Google Scholar 

  30. Maingé, P.E.: Accelerated proximal algorithms with a correction term for monotone inclusions. Appl. Math. Optim. 84, 2027–2061 (2021)

    MathSciNet  Google Scholar 

  31. Maingé, P.E.: Fast convergence of generalized forward–backward algorithms for structured monotone inclusions. J. Convex Anal. 29, 893–920 (2022)

    MathSciNet  Google Scholar 

  32. Maingé, P.E., Labarre, F.: Accelerated methods with fastly vanishing subgradients for structured non-smooth minimization. Numer. Algorithms (2021). https://doi.org/10.1007/s11075-021-01181-y

    Article  Google Scholar 

  33. Maingé, P.E., Weng-Law, A.: Fast continuous dynamics inside the graph of maximally monotone operators. Set-Valued Var. Anal. (2023). https://doi.org/10.1007/s11228-023-00663-6

    Article  MathSciNet  Google Scholar 

  34. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Infor. Rech. Opération. 4, 154–158 (1970)

    Google Scholar 

  35. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155(2), 447–454 (2003)

    MathSciNet  Google Scholar 

  36. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Math. Doklady 27, 372–376 (1983)

    Google Scholar 

  37. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence O(1/k2). Dokl. Akad. Nauk. USSR 269(3), 543–7 (1983)

    Google Scholar 

  38. Nesterov, Y.: Gradient methods for minimizing composite objective function. Math. Program. Ser. B 140, 125–161 (2013). https://doi.org/10.1007/s10107-012-0629-5

    Article  Google Scholar 

  39. O’Donoghue, B., Candès, E.: Adaptive restart for accelerated gradient schemes. Found. Comput. Math. 15(3), 715–32 (2015). https://doi.org/10.1007/s10208-013-9150-3

    Article  MathSciNet  Google Scholar 

  40. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    MathSciNet  Google Scholar 

  41. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)

    MathSciNet  Google Scholar 

  42. Raguet, H., Fadili, J., Peyré, G.: A generalized forward–backward splitting. SIAM J. Imaging Sci. 6, 1199–1226 (2013)

    MathSciNet  Google Scholar 

  43. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Opt. 14(5), 877–898 (1976)

    MathSciNet  Google Scholar 

  44. Rockafellar, R.T., Wets, J.B.: Variational Analysis. Springer, Berlin (1998)

    Google Scholar 

  45. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    MathSciNet  Google Scholar 

  46. Sebestyen, Z., Tarcsay, Z.: On the square root of a positive selfadjoint operator. Period. Math. Hung. 75, 268–272 (2017)

    MathSciNet  Google Scholar 

  47. Shi, B., Du, S.S., Jordan, M.I., Su, W.J.: Understanding the acceleration phenomenon via high-resolution differential equations (2018). https://doi.org/10.13140/RG.2.2.20063.92329

  48. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control. Optim. 38(2), 431–446 (2000)

    MathSciNet  Google Scholar 

  49. Villa, S., Salzo, S., Baldassarre, L., Verri, A.: Accelerated and inexact forward–backward algorithms. SIAM J. Optim. 23(3), 1607–1633 (2013)

    MathSciNet  Google Scholar 

  50. Vu, B.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38(3), 667–681 (2013)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Emile Maingé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A.1: Proof of Lemma 2.2

It is divided into the following several parts.

1.1.1 Appendix A.1.1: Proof of Lemma 2.2 (part 1): an estimation from a more general model

The next proposition was established in [32, Proposition 3.2].

Proposition A.1

Let \(\{ x_n, y_n, d_n\} \subset \mathcal {H}\) verify (2.16) along with \(\{e_*, \kappa , \nu _n\} \subset (0,\infty )\), and suppose that condition (2.11a) holds (for some integer \(n_1\)). Then for \((s,q) \in ( 0, \infty ) \times \mathcal {H}\) and for \(n \ge n_1\) we have

$$\begin{aligned}&\dot{G}_{n+1}(s,q) + \frac{1}{2} \rho _n^{-1} (e_*+\nu _{n+1})^2 \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2 \nonumber \\&\quad + s (e_*+\nu _{n+1}) \langle d_{n}, x_{n+1} -q \rangle \nonumber \\&\quad + \left( 1- s \frac{\rho _n}{e_*+\nu _{n+1}}\right) \rho _n^{-1} (e_*+\nu _{n+1})^2 \langle d_{n} ,\dot{x}_{n+1} \rangle = -{T}_{n}(s) , \end{aligned}$$
(A.1)

where \(\rho _n\) and \({T} _{n}(s)\) are given by (2.9) and (2.10), respectively, while \(G_n(s,q)\) is defined by

$$\begin{aligned} {G_n(s,q) = \frac{1}{2} \Vert s (q-x_{n} )+ \nu _n(y_{n} - x_{n} ) \Vert ^2 + \frac{1}{2} s(e_* -s) \Vert x_{n} -q\Vert ^2}. \end{aligned}$$
(A.2)

1.1.2 Appendix A.1.2: Proof of Lemma 2.2 (part 2)

At once we use Proposition A.1 so as to get estimates related to our proposed model. The following lemma is stated in the general setting of the parameter \(\gamma _n\):

Lemma A.2

Let \(\{ z_n, x_n, y_n \} \subset \mathcal {H}\) be generated by (1.8) along with \((\theta _n)\) given in (1.9) and parameters \(\{\gamma _n, e_*, \kappa , t, \mu , \nu _n \} \subset (0,\infty )\) verifying (2.11a) (for some integer \(n_1\)). Then, for any \((s,q) \in (0, \infty ) \times \mathcal {H}\) and for \(n \ge n_1\), we have

$$\begin{aligned}&\dot{\mathcal E}_{n+1}(s,q) + \frac{1}{2} \rho _n^{-1} (e_*+\nu _{n+1})^2 \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2 \nonumber \\&\quad + s \big ((e_*+\nu _{n}) -\gamma _n (e_*+\nu _{n+1})\big ) \langle t G(z_{n-1}),x_{n} -q \rangle \nonumber \\&\quad + \rho _n^{-1} (e_*+\nu _{n+1})^2 \big ( (\vartheta _{n}- \gamma _n) \langle t G(z_{n-1}), \dot{x}_{n+1} \rangle + \vartheta _{n}Z_n \big )= - { T}_{n}(s), \end{aligned}$$
(A.3)

where \(\vartheta _{n}=1-s\rho _n (e_*+\nu _{n+1}) ^{-1}\) and \(Z_n=\langle t G (z_n)- t G (z_{n-1}),\dot{x}_{n+1} \rangle \).

Proof

It can be observed (in light of Remark 2.2) that the iterates \(\{z_n, x_n, y_n \}\) generated by CRIFBA enter the special case of algorithm (2.16) when \(d_n= t (G z_n)- t \gamma _n (G z_{n-1})\). Hence by Proposition A.1, and denoting \(W_n= \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2\) (for the sake of simplicity), we obtain

$$\begin{aligned} \dot{G}_{n+1}(s,q) + \frac{1}{2}\rho _n^{-1} \tau _n^2 W_n + (s \tau _n) \langle d_n, x_{n+1} -q \rangle + \vartheta _{n}\rho _n^{-1} \tau _n^2\langle d_n,\dot{x}_{n+1} \rangle = -{ T}_{n}(s) , \end{aligned}$$
(A.4)

where \(\tau _n=e_*+ \nu _{n+1}\) and \(\vartheta _{n}= 1 -s \frac{\rho _n}{\tau _n}\) (\(\vartheta _{n}\) being also depending on s). Moreover, setting \( U_{n} =\langle t G(z_{n-1}), x_{n} -q\rangle \) and \(H_n=\langle t G (z_{n-1}), \dot{x}_{n+1} \rangle \) we have

$$\begin{aligned} \langle d_n, x_{n+1} -q \rangle&= \langle t G (z_n)- t \gamma _n G (z_{n-1}), x_{n+1} -q \rangle \\&=\langle t G (z_n), x_{n+1} -q \rangle - \gamma _n \langle t G(z_{n-1}), \dot{x}_{n+1} \rangle - \gamma _n \langle t G (z_{n-1}), x_{n} -q \rangle \\&=U_{n+1} - \gamma _n H_n - \gamma _n U_n, \end{aligned}$$

while denoting \(Z_n= \langle t G (z_n) - t G (z_{n-1}),\dot{x}_{n+1} \rangle \) (hence \(\langle G(z_n),\dot{x}_{n+1} \rangle = Z_n + H_n\)) gives us

$$\begin{aligned} \langle d_n, \dot{x}_{n+1} \rangle&= \langle t G (z_n)- t \gamma _n G (z_{n-1}), \dot{x}_{n+1} \rangle \nonumber \\&= \langle t G (z_n),\dot{x}_{n+1} \rangle - \gamma _n \langle t G(z_{n-1}) , \dot{x}_{n+1} \rangle = Z_n + H_n - \gamma _n H_n . \end{aligned}$$
(A.5)

Then, using the previous two results and checking that \( s\tau _n + \vartheta _{n}\rho _n^{-1} \tau _n^2= \rho _n^{-1} \tau _n^2\) amounts to

$$\begin{aligned}&(s \tau _n) \langle d_n, x_{n+1} -q \rangle + \vartheta _{n}\rho _n^{-1} \tau _n^2 \langle d_n,\dot{x}_{n+1} \rangle \\&\quad = (s\tau _n) \big ( U_{n+1} - \gamma _n U_n \big ) - \big (s\tau _n + \vartheta _{n}\rho _n^{-1} \tau _n^2\big ) \gamma _n H_n + \vartheta _{n}\rho _n^{-1} \tau _n^2 (Z_n + H_n) \\&\quad = (s\tau _n) \big ( U_{n+1} - \gamma _n U_n \big ) - \rho _n^{-1} \tau _n^2 \gamma _n H_n + \vartheta _{n}\rho _n^{-1} \tau _n^2 (Z_n + H_n). \end{aligned}$$

Thus, in light of (A.4) along with the previous equality, we infer that

$$\begin{aligned}&\dot{G}_{n+1}(s,q) + \frac{1}{2} \rho _n^{-1} \tau _n^2 W_n + (s \tau _n) (U_{n+1} -\gamma _{n}U_n) + { T}_{n}(s) \nonumber \\&= - \rho _n^{-1} \tau _n^2 \big ( - \gamma _n H_n + \vartheta _{n}(Z_n + H_n) \bigg ) = - \rho _n^{-1} \tau _n^2 \bigg ( (\vartheta _{n}- \gamma _n) H_n + \vartheta _{n}Z_n \big ). \end{aligned}$$
(A.6)

It is also simply seen that

$$\begin{aligned} \tau _n (U_{n+1}- \gamma _nU_{n}) = \tau _n U_{n+1}- \tau _{n-1} U_{n}+ \left( \tau _{n-1} -\tau _n \gamma _n\right) U_n, \end{aligned}$$

which by (A.6) and noticing that \({\mathcal E}_{n}(s,q)={G}_{n}(s,q) + s \tau _{n-1} U_{n}\) leads to

$$\begin{aligned}&\dot{\mathcal E}_{n+1}(s,q) + \frac{1}{2} \rho _n^{-1} \tau _n^2 W_n + s\left( \tau _{n-1} -\tau _n \gamma _n\right) U_n + { T}_{n}(s)\\&\quad = - \rho _n^{-1} \tau _n^2 \big ( (\vartheta _{n}- \gamma _n) H_n + \vartheta _{n}Z_n \big ). \end{aligned}$$

This completes the proof. \(\square \)

1.1.3 Appendix A.1.3: Proof of Lemma 2.2 (Part 3)

We prove the two results (2.12) and (2.14) successively.

Let us begin with proving (2.12). Suppose that (2.11a) holds (for some integer \(n_1\)). For \(n \ge n_1\), by \(\vartheta _{n}= 1-s \rho _n (e_*+\nu _{n+1})^{-1}\) and \(\gamma _n= 1-s_0 \rho _n (e_*+\nu _{n+1})^{-1}\), we readily have

$$\begin{aligned}&\vartheta _{n}- \gamma _n=s_0 \rho _n (e_*+\nu _{n+1})^{-1}- s \rho _n (e_*+\nu _{n+1})^{-1} = \rho _n (e_*+\nu _{n+1})^{-1} (s_0-s), \end{aligned}$$
(A.7a)
$$\begin{aligned}&(e_*+\nu _{n}) -(e_*+\nu _{n+1}) {\gamma _n} = (e_*+\nu _{n}) - (e_*+\nu _{n+1}) + s_0 \rho _n = s_0 \rho _n-\dot{\nu }_{n+1}. \end{aligned}$$
(A.7b)

Consequently, by (A.3) and (A.7a) we are led to (2.12), namely

$$\begin{aligned}&\dot{\mathcal E}_{n+1}(s,q) + \frac{1}{2} \rho _n^{-1} (e_*+\nu _{n+1})^2 \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2 \nonumber \\&\quad + s \left( s_0 \rho _n -\dot{\nu }_{n+1} \right) \langle t G(z_{n-1}), x_{n} -q\rangle \nonumber \\&\quad + (s_0-s)(e_*+\nu _{n+1}) H_n + \vartheta _{n}\rho _n^{-1} (e_*+\nu _{n+1})^2 Z_n = - { T}_{n}(s), \end{aligned}$$
(A.8)

where we recall that \(Z_n=\langle t G (z_n)- t G (z_{n-1}),\dot{x}_{n+1} \rangle \).

Now we prove (2.14). Suppose that (2.11b) holds (for some large enough integer \(n_1\) and some value \(\theta \)) and that (2.13) is satisfied. From the condition \(\nu _{n+1} \sim \nu _n\) (as \(n \rightarrow \infty \)) we clearly have \(\lim _{n \rightarrow \infty } (1-\kappa ) \frac{\nu _{n+1}}{\nu _n}=1-\kappa <1\). So, for \(n \ge n_1\) (with \(n_1\) large enough) we simply deduce \((1-\kappa )\frac{\nu _{n+1}}{\nu _n}<1\). It follows that (2.11a) is verified (for some integer \(n_1\)). Hence for \(n \ge n_1\), by the previous arguments we deduce that (A.8) holds. Thus, taking \(s=s_0\) in (A.8) and noticing that \(\vartheta _{n}\) reduces to \(\gamma _n\), we get

$$\begin{aligned}&\dot{\mathcal E}_{n+1}(s_0,q) + \frac{1}{2} \rho _n^{-1} (e_*+\nu _{n+1})^2 \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2 \nonumber \\&\quad + s_0 \left( s_0 \rho _n -\dot{\nu }_{n+1} \right) \langle t G (z_{n-1}),x_{n} -q \rangle + \gamma _n \rho _n^{-1} (e_*+\nu _{n+1})^2 Z_n = - { T}_{n}(s_0). \end{aligned}$$
(A.9)

We proceed with our reasoning by estimating the right side of the previous equality. Clearly, by definition of \(T_n(s_0)\) we have

$$\begin{aligned} -T_n(s_0)&\le \frac{1}{2} |1-\kappa | \rho _n \nu _{n} \nu _{n+1} \left\| y_{n} -x_{n} + \left( \frac{1}{\theta _n} - \frac{ e_*-s_0 }{ \nu _n \rho _n } \right) \dot{x}_{n+1} \right\| ^2 \nonumber \\&\quad - \frac{1}{2}\left( e_*-s_0 \right) \bigg ( (e_*+2 \nu _{n+1}) \rho _n^{-1} + s_0 (\rho _n^{-1}-1) \bigg ) \Vert \dot{x}_{n+1} \Vert ^2. \end{aligned}$$
(A.10)

Moreover, given \(\varepsilon >0\), thanks to Young’s inequality we classically obtain

$$\begin{aligned} \left\| y_{n} -x_{n} + \left( \frac{1}{\theta _n} - \frac{ e_*-s_0 }{ \nu _n \rho _n } \right) \dot{x}_{n+1} \right\| ^2&= \left\| \frac{1}{\theta _n} \big ( \theta _n (y_{n} -x_{n} ) +\dot{x}_{n+1} \big ) - \frac{ e_*-s_0 }{ \nu _n \rho _n } \dot{x}_{n+1} \right\| ^2 \\&\le \left( 1+2 \varepsilon \right) \left\| \frac{1}{\theta _n} \big ( \theta _n (y_{n} -x_{n} ) +\dot{x}_{n+1} \big ) \right\| ^2\\&\quad + \left( 1+\frac{1}{2\varepsilon }\right) \left\| \frac{ e_*-s_0 }{ \nu _n \rho _n } \dot{x}_{n+1} \right\| ^2 \\&= \left( 1+ 2 \varepsilon \right) \frac{1}{\theta _n^2} W_n\\&\quad + \left( 1+\frac{1}{2\varepsilon }\right) \left( \frac{ e_*-s_0 }{ \nu _n \rho _n } \right) ^2 \left\| \dot{x}_{n+1} \right\| ^2, \end{aligned}$$

hence, noticing that \(\theta _n = \frac{\nu _n \rho _n}{e_*+\nu _{n+1} }\), we obtain

$$\begin{aligned}&\frac{1}{2}\rho _n \nu _{n} \nu _{n+1} \left\| y_{n} -x_{n} + \left( \frac{1}{\theta _n} - \frac{ e_*-s_0 }{ \nu _n \rho _n } \right) \dot{x}_{n+1} \right\| ^2 \\&\quad \le \left( \frac{1}{2}+ \varepsilon \right) \rho _n \nu _{n} \nu _{n+1} \frac{1}{\theta _n^2} \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2\\&\qquad + \rho _n \nu _{n} \nu _{n+1} \left( \frac{1}{2} +\frac{1}{4\varepsilon }\right) \left( \frac{ e_*-s_0 }{ \nu _n \rho _n } \right) ^2 \left\| \dot{x}_{n+1} \right\| ^2 \\&\quad = \left( \frac{1}{2}+\varepsilon \right) \rho _n^{-1}\frac{\nu _{n+1}}{\nu _n} ( e_*+\nu _{n+1} )^2 \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2\\&\qquad + \left( \frac{1}{2}+\frac{1}{4 \varepsilon }\right) (e_*-s_0)^2 \rho _n^{-1}\frac{\nu _{n+1}}{\nu _n} \Vert \dot{x}_{n+1} \Vert ^2. \end{aligned}$$

So, combining this last result with (A.10) yields

$$\begin{aligned} -T_n(s_0)&\le \left( \frac{1}{2}+\varepsilon \right) |1-\kappa | \rho _n^{-1}\frac{\nu _{n+1}}{\nu _n} (e_*+\nu _{n+1} )^2 \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2 \\&\quad + \left( \frac{1}{2}+\frac{1}{4 \varepsilon }\right) |1-\kappa | (e_*-s_0)^2 \rho _n^{-1}\frac{\nu _{n+1}}{\nu _n} \Vert \dot{x}_{n+1} \Vert ^2 \\&\quad - \frac{1}{2}\left( e_*-s_0 \right) \rho _n^{-1} \big ( e_*+2 \nu _{n+1} + s_0 (1-\rho _n) \big ) \Vert \dot{x}_{n+1} \Vert ^2. \end{aligned}$$

It is also readily seen that \(1-\rho _n=(1-\kappa )\nu _{n+1}\nu _n^{-1}\), so that the previous inequality can be rewritten as

$$\begin{aligned}&-T_n(s_0) - \left( \frac{1}{2}+\varepsilon \right) |1-\kappa | \rho _n^{-1}\frac{\nu _{n+1}}{\nu _n} ( e_*+\nu _{n+1})^2 \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2 \\&\quad \le - \frac{1}{2}(e_*-s_0)\rho _n^{-1}\\&\qquad \left( e_*+2 \nu _{n+1} + s_0 (1-\kappa )\frac{\nu _{n+1}}{\nu _n} -2(e_*-s_0)\left( \frac{1}{2}+\frac{1}{4 \varepsilon }\right) |1-\kappa | \frac{\nu _{n+1}}{\nu _n} \right) \Vert \dot{x}_{n+1} \Vert ^2 \\&\quad = - \frac{1}{2}(e_*-s_0)\rho _n^{-1}\\&\qquad \left( e_*+2 \nu _{n+1} + \left( s_0 (1-\kappa ) -(e_*-s_0)\left( 1+\frac{1}{2 \varepsilon }\right) |1-\kappa | \right) \frac{\nu _{n+1}}{\nu _n} \right) \Vert \dot{x}_{n+1} \Vert ^2, \end{aligned}$$

or equivalently

$$\begin{aligned} -T_n(s_0)&\le \frac{1}{2} C_1(\varepsilon , \kappa ) \rho _n^{-1}\frac{\nu _{n+1}}{\nu _n} ( e_*+\nu _{n+1})^2 \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2 \nonumber \\&\quad - \frac{1}{2}(e_*-s_0)\rho _n^{-1}\left( e_*+2 \nu _{n+1} - C_2(\varepsilon , \kappa ) \frac{\nu _{n+1}}{\nu _n} \right) \Vert \dot{x}_{n+1} \Vert ^2, \end{aligned}$$
(A.11)

where the quantities \(C_1(\varepsilon , \kappa )\) and \(C_2(\varepsilon , \kappa )\) are defined by

$$\begin{aligned}{} & {} {C_1(\varepsilon , \kappa )= \left( 1+2 \varepsilon \right) |1-\kappa |}, \end{aligned}$$
(A.12a)
$$\begin{aligned}{} & {} {C_2(\varepsilon , \kappa )= (e_*-s_0)\left( 1+\frac{1}{2 \varepsilon }\right) |1-\kappa | -s_0 (1-\kappa )}. \end{aligned}$$
(A.12b)

It is clear that for any given \(\kappa \in (0,2)\) we have \(|1-\kappa |<1\). Note that \(\kappa =1\) yields \(C_1(\varepsilon ,1)=C_2(\varepsilon ,1)=0\), while, for \(\kappa \ne 1\), by considering positive values \(\epsilon _0\) and \(\theta \in (0,\frac{1}{2})\) such that \( \varepsilon _0 = \frac{1}{2} \theta \frac{1-|1-\kappa |}{|1-\kappa | }\), we are led to

$$\begin{aligned}{} & {} C_1(\varepsilon _0, \kappa )= |1-\kappa |+ \theta \left( 1- |1-\kappa | \right) , \end{aligned}$$
(A.13a)
$$\begin{aligned}{} & {} C_2(\varepsilon _0, \kappa )= (e_*-s_0) |1-\kappa |\frac{\theta + (1-\theta )|1-\kappa | }{\theta (1-|1-\kappa | )}-s_0 (1-\kappa ). \end{aligned}$$
(A.13b)

Then, for \(\kappa \in (0,2)\) and for \(n \ge n_1\), by inequality (A.11) we deduce that

$$\begin{aligned} -T_n(s_0)&\le \frac{1}{2} \bar{C}_1 \rho _n^{-1}\frac{\nu _{n+1}}{\nu _n} ( e_*+\nu _{n+1})^2 \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2 \nonumber \\&\quad - \frac{1}{2}(e_*-s_0)\rho _n^{-1}\left( e_*+2 \nu _{n+1} - \bar{C}_2 \frac{\nu _{n+1}}{\nu _n}\right) \Vert \dot{x}_{n+1} \Vert ^2, \end{aligned}$$
(A.14)

where \( \bar{C}_1\) and \(\bar{C}_2\) are given by

$$\begin{aligned}{} & {} {\bar{C}_1=C_1(\varepsilon _0, \kappa )\;\textrm{if}\;\kappa \ne 1,\; \textrm{and}\;\bar{C}_1=0\;\textrm{otherwise}}, \end{aligned}$$
(A.15a)
$$\begin{aligned}{} & {} {\bar{C}_2= C_2(\varepsilon _0, \kappa )\;\textrm{if}\;\kappa \ne 1,\;\textrm{and}\;\bar{C}_2=0\;\textrm{otherwise}}. \end{aligned}$$
(A.15b)

Consequently, for \(n\ge n_1\), by (A.9) in light of (A.14) we infer that

$$\begin{aligned}&\dot{\mathcal E}_{n+1}(s_0,q) + \frac{1}{2}\left( 1- \bar{C}_1 \frac{\nu _{n+1}}{\nu _n} \right) \rho _n^{-1} (e_*+\nu _{n+1})^2 \Vert \dot{x}_{n+1} + \theta _n (y_{n} -x_{n} )\Vert ^2 \nonumber \\&\qquad + s_0 \left( s_0 \rho _n -\dot{\nu }_{n+1} \right) \langle t G z_{n-1},x_{n} -q \rangle +\gamma _n \rho _n^{-1} (e_*+\nu _{n+1})^2 Z_n \nonumber \\&\qquad +\frac{1}{2}(e_*-s_0)\rho _n^{-1}\left( e_*+2 \nu _{n+1} - \bar{C}_2 \frac{\nu _{n+1}}{\nu _n} \right) \Vert \dot{x}_{n+1} \Vert ^2\le 0. \end{aligned}$$
(A.16)

It remains to estimate the terms \(\big ( 1- \bar{C}_1 \frac{\nu _{n+1}}{\nu _n} \big )\) and \(\big ( e_*+2 \nu _{n+1} - \bar{C}_2 \frac{\nu _{n+1}}{\nu _n} \big )\) arising in the previous inequality. Observe that, given \(\kappa \in (0,2)\), by the condition \(\nu _{n+1} \sim \nu _n\) (as \(n \rightarrow \infty \)) we obviously have

$$\begin{aligned} \lim _{n \rightarrow \infty } \frac{\nu _{n+1}}{\nu _n} < 1+ \frac{\theta (1- |1-\kappa |)}{ \theta + (1-\theta ) |1-\kappa |} \quad \left( \text {for any given}\;\theta \in \left( 0,\frac{1}{2}\right) \right) , \end{aligned}$$

hence, for \(n \ge n_1\) (with \(n_1\) large enough) we get

$$\begin{aligned} {\frac{\nu _{n+1}}{\nu _n} < 1+ \frac{\theta (1- |1-\kappa |)}{ \theta + (1-\theta ) |1-\kappa |} }. \end{aligned}$$
(A.17)

It can be also checked without any difficulties that we have the following equivalencies

$$\begin{aligned} \frac{\nu _{n+1}}{\nu _n}&< 1+ \frac{\theta (1- |1-\kappa |)}{ \theta + (1-\theta ) |1-\kappa |} \nonumber \\&\Leftrightarrow 2 \theta + (1-2 \theta )|1-\kappa |> \big ( \theta + (1-\theta ) |1-\kappa | \big ) \frac{\nu _{n+1}}{\nu _n}= C_1(\varepsilon _0, \kappa ) \frac{\nu _{n+1}}{\nu _n} \nonumber \\&\Leftrightarrow 1- C_1(\varepsilon _0, \kappa ) \frac{\nu _{n+1}}{\nu _n} > 1- 2\theta - (1-2 \theta )|1-\kappa |= (1-2 \theta )\left( 1- |1-\kappa | \right) . \end{aligned}$$
(A.18)

Then, for \(n \ge n_1\), by (A.17) and (A.18) we get

$$\begin{aligned} {1- C_1(\varepsilon _0, \kappa ) \frac{\nu _{n+1}}{\nu _n} > (1-2 \theta )\left( 1- |1-\kappa | \right) }. \end{aligned}$$
(A.19)

Moreover, for \(n \ge n_1\), it is not difficult to see that (2.11b) can be reformulated as

$$\begin{aligned} { \nu _{n+1} - C_2(\varepsilon _0, \kappa ) \frac{\nu _{n+1}}{\nu _n} \ge 0}. \end{aligned}$$
(A.20)

As a result, for \(n \ge n_1\), and letting c be introduced in (2.15), by (A.15a) in light of (A.19) and (A.20) we conclude that

$$\begin{aligned} {1- \bar{C}_1 \frac{\nu _{n+1}}{\nu _n} \ge c} \quad \textrm{and} \quad {e_*+2 \nu _{n+1} - \bar{C}_2 \frac{\nu _{n+1}}{\nu _n} \ge e_*+ \nu _{n+1}}, \end{aligned}$$
(A.21)

which, by (A.16), amounts to (2.14). \(\square \)

1.2 Appendix A.2: Proof of Proposition 3.1

For any \(x,y \in \mathcal {H}\), by definition of \(\langle \cdot ,\cdot \rangle _M\) along with \({\mathcal B}:= M^{-1}B\) we readily have

$$\begin{aligned} \langle {\mathcal B} (x)- {\mathcal B} (y), x-y \rangle _M = \langle M \big ( {\mathcal B} (x)- {\mathcal B} (y)\big ), x-y \rangle =\langle B (x)- B(y), x-y \rangle , \end{aligned}$$

hence condition (1.2b) equivalently writes

$$\begin{aligned} \langle {\mathcal B} (x)- {\mathcal B} (y), x-y \rangle _M \ge \Vert B (x) - B(y) \Vert _{L^{-1}}^2. \end{aligned}$$
(A.22)

Thanks to the same previously used arguments we additionally have

$$\begin{aligned} \Vert {\mathcal B} (x) - {\mathcal B}(y) \Vert _M^2&= \langle M \big ( {\mathcal B} (x) - {\mathcal B}(y) \big ), {\mathcal B} (x) - {\mathcal B}(y) \rangle \\&= \langle M^{-1}\big ( B(x) - B(y)\big ), B (x) -B(y) \rangle , \end{aligned}$$

which can be rewritten as

$$\begin{aligned} \Vert {\mathcal B} (x) - {\mathcal B}(y) \Vert _M^2= \langle L^{\frac{1}{2}} M^{-1}L^{\frac{1}{2}}L^{-\frac{1}{2}}\big ( B(x) - B(y)\big ), L^{-\frac{1}{2}} \big ( B (x) -B(y) \big ) \rangle , \end{aligned}$$
(A.23)

where \(L^{\frac{1}{2}}\) and \(L^{-\frac{1}{2}}\) are the square roots of the positive definite self-adjoint maps L and \(L^{-1}\), respectively. It is immediately deduced from (A.23) that

$$\begin{aligned} \Vert {\mathcal B} (x) - {\mathcal B}(y) \Vert _M^2 \le \Vert L^{\frac{1}{2}}\Vert \,\Vert M^{-1} \Vert \,\Vert L^{\frac{1}{2}}\Vert \,\Vert L^{-\frac{1}{2}}\big ( B(x) - B(y)\big )\Vert ^2, \end{aligned}$$
(A.24)

hence recalling that \(\Vert L^{\frac{1}{2}}\Vert ^2 = \Vert L\Vert \) (see Remark 3.2) leads us to

$$\begin{aligned} \Vert {\mathcal B} (x) - {\mathcal B}(y) \Vert _M^2 \le \Vert L\Vert \,\Vert M^{-1} \Vert \,\Vert B (x) - B(y) \Vert _{L^{-1}}^2 . \end{aligned}$$
(A.25)

So, combining (A.22) and (A.25) amounts to

$$\begin{aligned} \langle {\mathcal B} (x)- {\mathcal B} (y), x-y \rangle _M \ge {\bar{\beta }}_M \Vert {\mathcal B} (x) - {\mathcal B} (y) \Vert _{M}^2, \end{aligned}$$
(A.26)

where \({\bar{\beta }}_M=\frac{1}{\Vert L\Vert \times \Vert M^{-1}\Vert }\). This proves that \({\mathcal B}\) is \({\bar{\beta }}_M\)-cocoercive in \((\mathcal {H}, \langle \cdot ,\cdot \rangle _M)\). \(\square \)

1.3 Appendix A.3: Proof of Proposition 3.5

For simplification reasons, we write G instead of \(G^M_{\mu }\) and, given any mapping \(\Gamma :\mathcal {H}\rightarrow \mathcal {H}\) and any \(\{x_1,x_2\} \subset \mathcal {H}\), we denote \(\Delta \Gamma (x_1,x_2)=\Gamma (x_1)-\Gamma (x_2)\). Let \(\bar{A}=M^{-1}A\), \(\bar{B}=M^{-1}B\) and \(C=I-\mu \bar{B}\). Clearly, \(\bar{A}\) is monotone in \((\mathcal {H},\Vert .\Vert _M)\). It is also seen for \( x \in \mathcal {H}\) that \(G(x) =\mu ^{-1} \big ( x -J_{\mu \bar{A}}\big (C(x) \big )\big ) \), or equivalently

$$\begin{aligned} {G(x) = \bar{B}(x)+ \bar{A}_{\mu }(C(x))}, \end{aligned}$$
(A.27)

where \(\bar{A}_{\mu }:=\mu ^{-1} \left( I -J_{\mu \bar{A}}\right) \) is the Yosida regularization of \(\bar{A}\). Now, given \((x_1, x_2) \in \mathcal {H}^2\), we get

$$\begin{aligned}&\langle \Delta G(x_1,x_2) , x_1-x_2 \rangle _M = \langle \bar{B}(x_1)+ \bar{A}_{\mu }(C(x_1))-\bar{B}(x_2)- \bar{A}_{\mu }(C(x_2)) , x_1-x_2 \rangle _M \\&\quad = \langle \Delta \bar{B}(x_1, x_2) , x_1-x_2 \rangle _M + \langle \Delta (\bar{A}_{\mu } \circ C)(x_1, x_2) , x_1-x_2 \rangle _M \\&\quad = \langle \Delta \bar{B}(x_1, x_2) , x_1-x_2 \rangle _M + \langle \Delta (\bar{A}_{\mu } \circ C)(x_1, x_2) , \Delta C(x_1, x_2)\rangle _M \\&\qquad + \langle \Delta (\bar{A}_{\mu } \circ C)(x_1, x_2) , \Delta (I-C) (x_1, x_2) \rangle _M, \end{aligned}$$

hence, by \(I-C=\mu \bar{B}\), we equivalently obtain

$$\begin{aligned} \langle \Delta G(x_1,x_2), x_1-x_2 \rangle _M&\ge \langle \Delta \bar{B}(x_1,x_2) , x_1-x_2 \rangle _M\nonumber \\&\quad + \langle \Delta (\bar{A}_{\mu } \circ C)(x_1, x_2) , \Delta C(x_1, x_2) \rangle _M \nonumber \\&\quad + \mu \langle \Delta (\bar{A}_{\mu } \circ C)(x_1, x_2) , \Delta \bar{B}(x_1,x_2) \rangle _M. \end{aligned}$$
(A.28)

Let us estimate separately the last two terms in the right side of the previous inequality. As a classical result, by the \(\mu \)-cocoercivity of \(\bar{A}_{\mu }\) in \((\mathcal {H},\Vert \cdot \Vert _M)\), we have

$$\begin{aligned} \langle \Delta (\bar{A}_{\mu } \circ C)(x_1, x_2), \Delta {C}(x_1,x_2) \rangle _M \ge \mu \Vert \Delta (\bar{A}_{\mu } \circ C)(x_1, x_2) \Vert _M^2, \end{aligned}$$

which by \( \bar{A}_{\mu }\circ C =G- \bar{B}\) (from (A.27)) can be rewritten as

$$\begin{aligned}&\langle \Delta (\bar{A}_{\mu } \circ C)(x_1, x_2), \Delta {C}(x_1,x_2)\rangle _M \\&\quad \ge \mu \Vert \Delta G(x_1,x_2)- \Delta \bar{B}(x_1,x_2) \Vert _M^2 \\&\quad =\mu \Vert \Delta G(x_1,x_2) |_M^2 + \mu \Vert \Delta \bar{B}(x_1,x_2) \Vert _M^2 - 2 \mu \langle \Delta G(x_1,x_2),\Delta \bar{B}(x_1,x_2) \rangle _M. \end{aligned}$$

Moreover, by \( \bar{A}_{\mu }\circ C =G- \bar{B}\) (from (A.27)), we simply get

$$\begin{aligned}&\mu \langle \Delta (\bar{A}_{\mu } \circ C)(x_1, x_2) , \Delta \bar{B}(x_1,x_2) \rangle _M \\&\quad = \mu \langle \Delta G(x_1,x_2) - ( \Delta \bar{B}(x_1,x_2) ) , \Delta \bar{B}(x_1,x_2) \rangle _M \\&\quad = \mu \langle \Delta {G}(x_1,x_2) ) , \Delta \bar{B}(x_1,x_2) \rangle _M - \mu \Vert \Delta \bar{B}(x_1,x_2) \Vert ^2 _M. \end{aligned}$$

Thus, by (A.28) and the previous arguments, we obtain

$$\begin{aligned}&\langle \Delta {G}(x_1,x_2), x_1-x_2 \rangle _M \\&\quad \ge \langle \Delta \bar{B}(x_1,x_2) , x_1-x_2 \rangle _M + \mu \Vert \Delta {G}(x_1,x_2) \Vert _M^2 + \mu \Vert \Delta \bar{B}(x_1,x_2) \Vert _M^2 \\&\qquad - 2 \mu \langle \Delta {G}(x_1,x_2), \Delta \bar{B}(x_1,x_2) \rangle _M + \mu \langle \Delta {G}(x_1,x_2), \Delta \bar{B}(x_1,x_2) \rangle _M \\&\qquad - \mu \Vert \Delta \bar{B}(x_1,x_2)\Vert ^2 _M \\&\quad = \langle \Delta \bar{B}(x_1,x_2) , x_1-x_2 \rangle _M + \mu \Vert \Delta {G}(x_1,x_2) \Vert _M^2 - \mu \langle \Delta {G}(x_1,x_2), \Delta \bar{B}(x_1,x_2) \rangle _M. \end{aligned}$$

Hence, reminding that \(\bar{B}=M^{-1}B\), we equivalently obtain

$$\begin{aligned} \langle \Delta {G}(x_1,x_2), x_1-x_2 \rangle _M&\ge \langle \Delta {B}(x_1,x_2) , x_1-x_2 \rangle + \mu \Vert \Delta {G}(x_1,x_2) \Vert _M^2 \\&\quad - \mu \langle \Delta {G}(x_1,x_2), \Delta {B}(x_1,x_2) \rangle . \end{aligned}$$

Then by the cocoercivity assumption on B we infer that

$$\begin{aligned} \langle \Delta {G}(x_1,x_2), x_1-x_2 \rangle _M&\ge \Vert \Delta {B}(x_1,x_2) \Vert ^2_{L^{-1}} + \mu \Vert \Delta {G}(x_1,x_2) \Vert _M^2\nonumber \\&\quad - \mu \langle \Delta {G}(x_1,x_2) , \Delta {B}(x_1,x_2) \rangle . \end{aligned}$$
(A.29)

Now, let us prove (3.13) for \(i=1\). From an easy computation, we obtain

$$\begin{aligned} \Vert \Delta {B}(x_1,x_2) \Vert ^2 \le \Vert L ^{\frac{1}{2}} \Vert ^{2} \Vert \Delta {B}(x_1,x_2) \Vert ^2_{L^{-1}}. \end{aligned}$$

hence, for \(\delta >0\), using successively Peter–Paul’s inequality and the previous one gives us

$$\begin{aligned} \langle \Delta {G}(x_1,x_2) , \Delta {B}(x_1,x_2) \rangle&\le { \delta \Vert \Delta {G}(x_1,x_2) \Vert ^2}+ {\frac{1}{4 \delta } \Vert \Delta {B}(x_1,x_2) \Vert ^2} , \nonumber \\&\le { \delta \Vert \Delta {G}(x_1,x_2)\Vert ^2} + {\frac{1}{4 \delta } \Vert L ^{\frac{1}{2}}\Vert ^{2} \Vert \Delta {B}(x_1,x_2)\Vert ^2_{L^{-1}} }. \end{aligned}$$
(A.30)

Therefore, combining this last inequality with (A.29) entails

$$\begin{aligned}&\langle \Delta {G}(x_1,x_2) , x_1-x_2 \rangle _M \\&\quad \ge \left( 1 - \frac{\mu }{4 \delta } \Vert L ^{\frac{1}{2}}\Vert ^{2} \right) \Vert \Delta {B}(x_1,x_2)|^2_{L^{-1}} + \mu \left( \Vert \Delta {G}(x_1,x_2) \Vert _M^2 - \delta \Vert \Delta {G}(x_1,x_2) \Vert ^2\right) \\&\quad = \left( 1 - \frac{\mu }{4 \delta } \Vert L ^{\frac{1}{2}}\Vert ^{2} \right) \Vert \Delta {B}(x_1,x_2)\Vert ^2_{L^{-1}} + \mu \langle \left( M -\delta I \right) \Delta {G}(x_1,x_2) , \Delta {G}(x_1,x_2) \rangle , \\ \end{aligned}$$

that is (3.13) with \(i=1\).

Let us prove (3.13) for \(i=2\). Using again Peter–Paul’s inequality, we readily have

$$\begin{aligned} \mu \langle \Delta {G}(x_1,x_2) , \Delta {B}(x_1,x_2) \rangle&=\langle \mu \Delta {G}(x_1,x_2) , L ^{\frac{1}{2}} L ^{-\frac{1}{2}}\Delta {B}(x_1,x_2) \rangle \\&=\langle \mu L ^{\frac{1}{2}}\Delta {G}(x_1,x_2) , L ^{-\frac{1}{2}}\Delta {B}(x_1,x_2) \rangle \\&\le \mu ^2 \Vert L ^{\frac{1}{2}}\Delta {G}(x_1,x_2) \Vert ^2+ \frac{1}{4 } \Vert L ^{-\frac{1}{2}} \Delta {B}(x_1,x_2) \Vert ^2 \\&= \mu ^2\langle L \Delta {G}(x_1,x_2), \Delta {G}(x_1,x_2) \rangle \\&\quad + \frac{1}{4} \Vert \Delta {B}(x_1,x_2) \Vert ^2_{L ^{-1} }, \end{aligned}$$

which, in light (A.29), gives us

$$\begin{aligned} \langle \Delta {G}(x_1,x_2) , x_1-x_2 \rangle _M&\ge \frac{3}{4 } \Vert \Delta {B}(x_1,x_2)\Vert ^2_{L^{-1}} \\&\quad + \mu \langle \left( M -\mu \delta L \right) \Delta {G}(x_1,x_2), \Delta {G}(x_1,x_2) \rangle , \end{aligned}$$

that is (3.13) with \(i=2\). \(\square \)

1.4 Appendix A.4: A useful inequality

Let us recall the following basic but useful result.

Proposition A.3

For \(\epsilon \in (0,1)\), \(\{h, a_1,a_2, \sigma _1, \sigma _1 \}\subset [0,\infty )\) such that \(h \le \epsilon \sqrt{\sigma _1\sigma _2}\), we have the following inequality

$$\begin{aligned} \sigma _1 a_1^2 + \sigma _2 a_2^2 - 2 h a_1 a_2 \ge (1-\epsilon ) \big ( \sigma _1 a_1^2 + \sigma _2 a_2^2 \big ). \end{aligned}$$
(A.31)

Proof

Clearly, we have

$$\begin{aligned} \sigma _1 a_1^2 + \sigma _2 a_2^2 - 2 h a_1 a_2&= (1-\epsilon ) \big ( \sigma _1 a_1^2 + \sigma _2 a_2^2 \big ) + \epsilon \big ( \sigma _1 a_1^2 + \sigma _2 a_2^2 \big )- 2 h a_1 a_2 \\&= (1-\epsilon ) \big ( \sigma _1 a_1^2 + \sigma _2 a_2^2 \big ) + \epsilon \big ( \sigma _1 a_1^2 + \sigma _2 a_2^2 - 2 \sqrt{\sigma _1\sigma _2 } a_1 a_2\big )\\&\quad + 2 \epsilon \sqrt{\sigma _1\sigma _2 } a_1 a_2- 2 h a_1 a_2 \\&= (1-\epsilon ) \big ( \sigma _1 a_1^2 + \sigma _2 a_2^2 \big ) + \epsilon \big ( \sqrt{\sigma _1 } a_1 - \sqrt{\sigma _2 } a_2 \big )^2\\&\quad + 2 \big ( \epsilon \sqrt{\sigma _1\sigma _2 } - h \big )a_1 a_2, \end{aligned}$$

which completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maingé, PE., Weng-Law, A. Accelerated forward–backward algorithms for structured monotone inclusions. Comput Optim Appl 88, 167–215 (2024). https://doi.org/10.1007/s10589-023-00547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-023-00547-3

Keywords

Mathematics Subject Classification

Navigation