Abstract
The graph set T-colouring problem (GSTCP) generalises the classical graph colouring problem; it asks for the assignment of sets of integers to the vertices of a graph such that constraints on the separation of any two numbers assigned to a single vertex or to adjacent vertices are satisfied and some objective function is optimised. Among the objective functions of interest is the minimisation of the difference between the largest and the smallest integers used (the span). In this article, we present an experimental study of local search algorithms for solving general and large size instances of the GSTCP. We compare the performance of previously known as well as new algorithms covering both simple construction heuristics and elaborated stochastic local search algorithms. We investigate systematically different models and search strategies in the algorithms and determine the best choices for different types of instance. The study is an example of design of effective local search for constraint optimisation problems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aardal, K. I., van Hoesel, C. P. M., Koster, A. M. C. A., Mannino, C., & Sassano, A. (2003). Models and solution techniques for the frequency assignment problem. 4OR: Operational Research Quarterly, 1(4), 261–317 (An updated version to appear in Annals of Operations Research is available at http://fap.zib.de/download/fap2007.ps.gz).
Allen, S. M., Smith, D. H., & Hurley, S. (1999). Lower bounding techniques for frequency assignment. Discrete Mathematics, 197-198, 41–52.
Anderson, L. G. (1973). A simulation study of some dynamic channel assignment algorithms in a high capacity mobile telecommunications system. IEEE Transactions on Communications, 21, 1294–1301.
Bartz-Beielstein, T., & Markon, S. (2004). Tuning search algorithms for real-world applications: A regression tree based approach. In Congress on evolutionary computation (CEC’04) (pp. 1111–1118). Piscataway NJ: IEEE Press.
Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In W. B. Langdon, et al. eds., Proceedings of the genetic and evolutionary computation conference (GECCO-2002) (pp. 11–18). San Francisco, CA: Morgan Kaufmann.
Borndörfer, R., Eisenblätter, A., Grötschel, M., & Martin, A. (1998). Frequency assignment in cellular phone networks. Annals of Operation Research, 76, 73–93.
Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont, CA: Wadsworth.
Castelino, D. J., Hurley, S., & Stephens, N. M. (1996). A tabu search algorithm for frequency assignment. Annals of Operation Research, 63(2), 301–320.
Chiarandini, M. (2005). Stochastic Local Search Methods for Highly Constrained Combinatorial Optimisation Problems. Ph.D. thesis, Computer Science Department, Darmstadt University of Technology, Darmstadt, Germany.
Chiarandini, M., Stützle, T., & Larsen, K. S. (2006). Colour reassignment in tabu search for the graph set T-colouring problem. In F. Almeida, J. Marcos Moreno, & M. Pérez (Eds.), Third international workshop on hybrid metaheuristics. Lecture Notes in Computer Science (Vol. 4030, pp. 162–177). Berlin: Springer.
Conover, W. J. (1999). Practical nonparametric statistics, (3rd ed.). New York: Wiley.
Costa, D. (1993). On the use of some known methods for T-colorings of graphs. Annals of Operation Research, 41(4), 343–358.
Cozzens, M. B., & Roberts, F. S. (1982). T-colorings of graphs and the channel assignment problem. Congressus Numerantium, 35, 191–208.
Culberson, J. C. (1992). Iterated greedy graph coloring and the difficulty landscape. Technical Report 92-07, Department of Computing Science, The University of Alberta, Edmonton, Canada.
de Givry, S., Verfaillie, G., & Schiex, T. (1997). Bounding the optimum of constraint optimization problems. In Principles and practice of constraint programming - CP97. Lecture notes in computer science (Vol. 1330, pp. 405–419). Berlin: Springer.
Dorne, R., & Hao, J. K. (1998). Tabu search for graph coloring, T-colorings and set T-colorings. In Meta-heuristics: Advances and trends in local search paradigms for optimization (pp. 77–92). Norwell, MA: Kluwer.
Eisenblätter, A., Grötschel, M., & Koster, A. M. C. A. (2002). Frequency assignment and ramifications of coloring. Discussiones Mathematicae Graph Theory, 22, 51–88.
Galinier, P., & Hao, J. (1999). Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization, 3(4), 379–397.
Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of \(\cal NP\)-Completeness. San Francisco, CA: Freeman.
Giaro, K., Janczewski, R., & Malafiejski, M. (2003). The complexity of the T-coloring problem for graphs with small degree. Discrete Applied Mathematics, 129(2-3), 361–369.
Giaro, K., Janczewski, R., & Malafiejski, M. (2003). A polynomial algorithm for finding T-span of generalized cacti. Discrete Applied Mathematics, 129(2-3), 371–382.
Hale, W. K. (1980). Frequency assignment: Theory and applications. Proceedings I.E.E.E., 68(12), 1497–1514.
Hao, J.-K., Dorne, R., & Galinier, P. (1998). Tabu search for frequency assignment in mobile radio networks. Journal of Heuristics, 4(1), 47–62.
Hao, J.-K., & Perrier, L. (1999). Tabu search for the frequency assignment problem in cellular radio networks. Technical Report LGI2P, EMA-EERIE, Parc Scientifique Georges Besse, Nimes, France.
Hoos, H. H., & Stützle, T. (2004). Stochastic local search: Foundations and applications. San Francisco, CA: Morgan Kaufmann.
Hurley, S., Smith, D. H., & Thiel, S. U. (1997). FASoft: A system for discrete channel frequency assignment. Radio Science, 32(5), 1921–1939.
Janssen, J., & Narayanan, L. (2001). Approximation algorithms for the channel assignment problem. Theoretical Computer Science, 262, 649–667.
Janssen, J., Wentzell, T., & Fitzpatrick, S. (2005). Lower bounds from tile covers for the channel assignment problem. SIAM Journal of Discrete Mathematics, 18(4), 679–696.
Johnson, D. S., Mehrotra, A., & Trick, M. (Eds.) (2002). Proceedings of the Computational Symposium on Graph Coloring and Its Generalizations, Ithaca, NY.
Joslin, D. E., & Clements, D. P. (1999). Squeaky wheel optimization. Journal of Artificial Intelligence Research, 10, 353–373.
Lim, A., Zhang, X., & Zhu, Y. (2003). A hybrid method for the graph coloring and related problems. In Proceedings of MIC’2003—The fifth metaheuristics international conference, Kyoto-Japan.
Lim, A., Zhu, Y., Lou, Q., & Rodrigues, B. (2005). Heuristic methods for graph coloring problems. In SAC ’05: Proceedings of the 2005 ACM symposium on applied computing (pp. 933–939). New York: ACM.
Malaguti, E., & Toth, P. (2007). An evolutionary approach for bandwidth multicoloring problems. European Journal of Operational Research, in press (doi:10.1016/j.ejor.2006.09.095).
Matsui, S., & Tokoro, K. (2001). Improving the performance of a genetic algorithm for the minimum span frequency assignment problem with an adaptive mutation rate and a new initialization method. In Proceedings of the genetic and evolutionary computation conference (GECCO-2001) (pp. 1359–1366). San Francisco, CA: Morgan Kaufmann.
McGeoch, C., Sanders, P., Fleischer, R., Cohen, P. R., & Precup D. (2002). Using finite experiments to study asymptotic performance. In R. Fleischer, B. Moret, & E. Meineche Schmidt (Eds.) Experimental algorithmics: From algorithm design to robust and efficient software. Lecture notes in computer science (Vol. 2547, pp. 93–126). Berlin: Springer.
Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1992). Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58(1-3), 161–205.
Montemanni, R. (2001). Upper and lower bounds for the fixed spectrum frequency assignment problem. Ph.D. thesis, Division of Mathematics and Statistics, School of Technology, University of Glamorgan, UK.
Montgomery, D. C. (2005). Design and analysis of experiments (6th ed.). New York: Wiley.
Phan, V., & Skiena, S. (2002). Coloring graphs with a general heuristic search engine. In Johnson et al. [29] (pp. 92–99).
Prestwich, S. (2002). Coloration neighbourhood search with forward checking. Annals of Mathematics and Artificial Intelligence, 34(4), 327–340.
Prestwich, S. (2002). Constrained bandwidth multicoloration neighbourhoods. In Johnson et al. [29], (pp. 126–133).
Prestwich, S. (2003). Hybrid local search on two multicolouring models. In International Symposium on Mathematical Programming, Copenhagen, Denmark.
Prestwich, S., & Roli, A. (2005). Symmetry breaking and local search spaces. In R. Barták & M. Milano (Eds.), CPAIOR, Lecture notes in computer science (Vol. 3524, pp. 273–287). Berlin Heidelberg New York: Springer.
Roberts, F. S. (1991). T-colorings of graphs: Recent results and open problems. Discrete Mathematics, 93(2-3), 229–245.
Simon, H. U. (1989). Approximation algorithms for channel assignment in cellular radio networks. In Fundamentals of computation theory. Lecture notes in computer science, (Vol. 380, pp. 405–415). Berlin: Springer.
Sivarajan, K. N., McEliece, R. J., & Ketchum, J. W. (1989). Channel assignment in cellular radio. In Proceedings of the 39th IEEE vehicular technology conference (pp. 846–850).
Smith, D. H., Hurley, S., & Allen, S. M. (2000). A new lower bound for the channel assignment problem. IEEE Transactions on Vehicular Technology, 49(4), 1265–1272.
Stützle, T. (1998). Local Search Algorithms for Combinatorial Problems—Analysis, Improvements, and New Applications. Ph.D. thesis, FB Informatik, Technische Universität Darmstadt, Darmstadt, Germany.
Tesman, B. A. (1990). Set T-colorings. Congressus Numerantium, 77, 229–242.
Tsang, E., & Voudouris, C. (1998). Solving the radio link frequency assignment problem using guided local search. In NATO Symposium on Radio Length Frequency Assignment, Aalborg, Denmark.
Voudouris, C. (1997). Guided Local Search for Combinatorial Optimization Problems. Ph.D. thesis, University of Essex, Department of Computer Science, Colchester, UK.
Walser, J. P. (1996). Feasible cellular frequency assignment using constraint programming abstractions. In Proceedings of the workshop on constraint programming applications, held in conjunction with CP96, Cambridge, MA.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chiarandini, M., Stützle, T. Stochastic Local Search Algorithms for Graph Set T-colouring and Frequency Assignment. Constraints 12, 371–403 (2007). https://doi.org/10.1007/s10601-007-9023-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10601-007-9023-y