Skip to main content
Log in

A new framework for sharp and efficient resolution of NCSP with manifolds of solutions

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

When numerical CSPs are used to solve systems of n equations with n variables, the preconditioned interval Newton operator plays two key roles: First it allows handling the n equations as a global constraint, hence achieving a powerful contraction. Second it can prove rigorously the existence of solutions. However, none of these advantages can be used for under-constrained systems of equations, which have manifolds of solutions. A new framework is proposed in this paper to extend the advantages of the preconditioned interval Newton to under-constrained systems of equations. This is achieved simply by allowing domains of the NCSP to be parallelepipeds, which generalize the boxes usually used as domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benhamou, F., Goualard, F., Granvilliers, L., & Puget, J. F. (1999). Revising hull and box consistency. In International conference on logic programming (pp. 230–244).

  2. Benhamou, F., McAllister, D., & Van Hentenryck, P. (1994). CLP(Intervals) revisited. In International symposium on logic programming (pp. 124–138).

  3. Benhamou, F., & Older, W. J. (1997). Applying interval arithmetic to real, integer and boolean constraints. Journal of Logic Programming, 32(1), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chablat, D., & Wenger, Ph. (1998). Working modes and aspects in fully-parallel manipulator. In IEEE international conference on robotics and automation (pp. 1970–1976). Piscataway: IEEE.

    Google Scholar 

  5. Collavizza, H., Delobel, F., & Rueher, M. (1999). Comparing partial consistencies. Reliable Computing, 1, 1–16.

    Google Scholar 

  6. Goldberg, D. (1991). What every computer scientist should know about floating-point arithmetic. Computing Surveys, 23(1), 5–48.

    Article  Google Scholar 

  7. Goldsztejn, A. (2005). A right-preconditioning process for the formal-algebraic approach to inner and outer estimation of AE-solution sets. Reliable Computing, 11(6), 443–478.

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldsztejn, A. (2006). A branch and prune algorithm for the approximation of non-linear AE-solution sets. In Proc. of ACM SAC 2006 (pp. 1650–1654).

  9. Goldsztejn, A. (2008). Sensitivity analysis using a fixed point interval iteration. Technical Report hal-00339377, CNRS.

  10. Goldsztejn, A., & Granvilliers, L. (2008). A new framework for sharp and efficient resolution of NCSP with manifolds of solution. In Proceedings of CP 2008. LNCS (Vol. 5202/2008, pp. 190–204).

  11. Goldsztejn, A., & Hayes, W. (2006). Reliable inner approximation of the solution set to initial value problems with uncertain initial value. In Proc. of SCAN 2006.

  12. Granvilliers, L., & Benhamou, F. (2006). RealPaver: An interval solver using constraint satisfaction techniques. ACM Transactions on Mathematical Software, 32(1), 138–156.

    Article  MathSciNet  Google Scholar 

  13. Hansen, E. (1992). Global optimization using interval analysis, Second Edn. New York: Marcel Dekker.

    MATH  Google Scholar 

  14. Hayes, B. (2003). A lucid interval. American Scientist, 91(6), 484–488.

    Google Scholar 

  15. Jaulin, L., Kieffer, M., Didrit, O., & Walter, E. (2001). Applied interval analysis with examples in parameter and state estimation, robust control and robotics. New York: Springer.

    MATH  Google Scholar 

  16. Kearfott, R. B. (1996). Interval computations: Introduction, uses, and resources. Euromath Bulletin, 2(1), 95–112.

    MathSciNet  Google Scholar 

  17. Kearfott, R. B., & Xing, Z. (1994). an interval step control for continuation methods. SIAM Journal on Numerical Analysis, 31(3), 892–914.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lhomme, O. (1993). Consistency techniques for numeric CSPs. In Proceedings of IJCAI 1993 (pp. 232–238).

  19. Merlet, J. P. (2000). Parallel robots. Dordrecht: Kluwer.

    MATH  Google Scholar 

  20. Moore, R. (1966). Interval analysis. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  21. Moré, J. J., Garbow, B. S., & Hillstrom, K. E. (1981). Testing unconstrained optimization software. ACM Transactions on Mathematical Software, 7(1), 136–140.

    Article  Google Scholar 

  22. Nedialkov, N. S., Jackson, K. R., & Corliss, G. F. (1999). Validated solutions of initial value problems for ordinary differential equations. Applied Mathematics and Computation, 105(1), 21–68.

    Article  MathSciNet  MATH  Google Scholar 

  23. Neumaier, A. (1987). Overestimation in linear interval equations. SIAM Journal on Numerical Analysis, 24(1), 207–214.

    Article  MathSciNet  MATH  Google Scholar 

  24. Neumaier, A. (1990). Interval methods for systems of equations. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  25. Ortega, J. M., & Rheinboldt, W. C. (2000). Iterative solution of nonlinear equations in several variables. Philadelphia: SIAM.

    MATH  Google Scholar 

  26. Rump, S. M. (1988). Rigorous sensitivity analysis for systems of linear and nonlinear equations. Mathematics of Computation, 54(10), 721–736.

    MathSciNet  Google Scholar 

  27. Tupper, J. (2001). Reliable two-dimensional graphing methods for mathematical formulae with two free variables. In SIGGRAPH ’01 (pp. 77–86). New York: ACM.

    Chapter  Google Scholar 

  28. Van Hentenryck, P., McAllester, D., & Kapur, D. (1997). Solving polynomial systems using a branch and prune approach. SIAM Journal on Numerical Analysis, 34(2), 797–827.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Goldsztejn.

Additional information

This paper is an extended version of [10] presented at CP 2008 where it has been granted the best research paper award.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldsztejn, A., Granvilliers, L. A new framework for sharp and efficient resolution of NCSP with manifolds of solutions. Constraints 15, 190–212 (2010). https://doi.org/10.1007/s10601-009-9082-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-009-9082-3

Keywords

Navigation