
Constraints

Symmetries, Almost Symmetries, and Lazy Clause Generation
--Manuscript Draft--

Manuscript Number: CONS-D-13-00025R2

Full Title: Symmetries, Almost Symmetries, and Lazy Clause Generation

Article Type: Original Research

Keywords: lazy clause generation
symmetry breaking
almost symmetry

Corresponding Author: Peter J. Stuckey
University Of Melbourne
Parkville, Victoria AUSTRALIA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University Of Melbourne

Corresponding Author's Secondary
Institution:

First Author: Geoffrey Chu

First Author Secondary Information:

Order of Authors: Geoffrey Chu

Maria Garcia de la Banda

Chris Mears

Peter J. Stuckey

Order of Authors Secondary Information:

Abstract: Lazy Clause Generation is a powerful approach for reducing search in Constraint
Programming. This is achieved by recording sets of domain restrictions that previously
led to failure as new clausal propagators. Symmetry breaking approaches are also
powerful methods for reducing search by avoiding the exploration of symmetric parts of
the search space. In this paper, we show how we can successfully combine Symmetry
Breaking During Search and Lazy Clause Generation to create a new symmetry
breaking method which we call SBDS-1UIP. We show that the more precise nogoods
generated by a lazy clause solver allow our combined approach to exploit symmetries
that cannot be exploited by any previous symmetry breaking method. We also show
that SBDS-1UIP can easily be modified to exploit almost symmetries very effectively.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

> COMMENTS FOR THE AUTHOR:
>
> The authors have addressed almost all the issues raised in the original
> reviews, and I think the paper is now suitable for publication.
>
> I found some very minor typos and unclear statements:
>
> Page 3, line 18 "variable in x" -> "variable x"
> Page 4, line 20 "domain D' as D' = " -> "domain D' given by D' = "
> Page 4, line 37 "If propagation is unable to detect either of these cases" -> "If neither of these cases
hold"
> Page 4, line 53 "clausal propagators" are not defined
> Page 6, line 45 "equivalently x_1 = 1 \wedge x_2 \neq 2" -> "equivalently x_1 \neq 1 \vee x_2 \neq 2"
> Page 6, line 48 "is no the important direction" -> "is not the important direction"
> Page 7, line 51 "S is a symmetry group of P" -> "S induces a symmetry group of P" (S is a symmetry
group of V)
> Page 8, line 24 Similarly
> Page 8, line 47 "the constraint of the problem x_1 \neq x_2 + 1" - what problem?
> Page 9, line 15 "each d_i is known to be an equality literal" Why? The footnote says that other literals
are allowed?
> Page 12, line 34 "when we apply the symmetry is applied" -> "when the symmetry is applied"
> Page 12, line 36 "symmetrie" -> "symmetry"
> Page 15, line 7 What does it mean to "swap sequences"?
> Page 19, line 7 "visit less nodes" -> "visit fewer nodes"
> Page 21, line 31 What is S here?

We have fixed all the typos pointed out above and rephrased the unclear
statements.

Response to Reviewer Comments

Constraints manuscript No.
(will be inserted by the editor)

Symmetries, Almost Symmetries, and Lazy Clause

Generation

Geoffrey Chu · Maria Garcia de la Banda ·

Christopher Mears · Peter J. Stuckey

Received: - / Accepted: -

Abstract Lazy Clause Generation is a powerful approach for reducing search in
Constraint Programming. This is achieved by recording sets of domain restrictions
that previously led to failure as new clausal propagators. Symmetry breaking ap-
proaches are also powerful methods for reducing search by avoiding the exploration
of symmetric parts of the search space. In this paper, we show how we can suc-
cessfully combine Symmetry Breaking During Search and Lazy Clause Generation
to create a new symmetry breaking method which we call SBDS-1UIP. We show
that the more precise nogoods generated by a lazy clause solver allow our com-
bined approach to exploit symmetries that cannot be exploited by any previous
symmetry breaking method. We also show that SBDS-1UIP can easily be modified
to exploit almost symmetries very effectively.

Keywords Symmetry Breaking · Almost Symmetry · Lazy Clause Generation

1 Introduction

Lazy Clause Generation (LCG) [28,9] is a powerful approach for reducing search in
Constraint Programming. It works by instrumenting finite domain propagation to
record the reasons for each propagation step, thus creating an implication graph
like the ones built by a SAT solver [26]. This graph is then used to derive no-
goods (i.e., reasons for failure) which can be propagated efficiently using SAT unit
propagation technology, and can lead to exponential reductions in search space
on structured problems. LCG provides state of the art solutions to a number of
combinatorial optimization problems such as the Resource Constrained Project
Scheduling Problems [32] and the Carpet Cutting Problem [33].

An earlier version of this paper appeared as [4]

Geoffrey Chu · Peter J. Stuckey National ICT Australia, Victoria Laboratory,
Department of Computing and Information Systems,
University of Melbourne, Australia E-mail: gchu,pjs@cis.unimelb.edu.au · Maria Garcia de la
Banda · Christopher Mears Faculty of Information Technology,
Monash University, Australia E-mail: mbanda,cmears@infotech.monash.edu.au

Manuscript
Click here to download Manuscript: paper.tex
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/cons/download.aspx?id=13817&guid=84061794-0b81-4a81-ba2b-2e1f21a9c281&scheme=1
http://www.editorialmanager.com/cons/viewRCResults.aspx?pdf=1&docID=469&rev=2&fileID=13817&msid={B6CC9F2D-3CFB-4E8B-84AC-34D06C48D6D2}

Symmetry breaking is also a powerful method for reducing search. Symmetry
breaking refers to techniques that, given a constraint problem with a known set
of symmetries, avoid the exploration of symmetric parts of the search space when
solving the problem. There are two main approaches to symmetry breaking: static
and dynamic. Static symmetry breaking (see, for example, [6,19]) alters the origi-
nal problem by adding new constraints that ensure the search will find only a single
representative of each group of symmetric solutions. In contrast, dynamic symme-
try breaking (see, for example, [1,14,8,30]) leaves the original problem unaltered
and, instead, alters the search procedure itself to exclude symmetric regions.

Combining static symmetry breaking with LCG is straightforward and quite
successful. However, choosing symmetry breaking constraints that are both effi-
cient and correct can be non-trivial, particularly when the problem has different
kinds of symmetries. Further, static methods sometimes disagree with the search
strategy [11], that is, they might select a representative that is not among the
solutions that the search would have found first, or might add constraints with
poor propagation for the particular search strategy used. In such cases, it may be
more effective to combine LCG with dynamic methods, such as Symmetry Break-
ing During Search (SBDS) [14,1] or Symmetry Breaking by Dominance Detection
(SBDD) [8], since they always agree with the search strategy.

Both SBDS and SBDD can be seen as using symmetric versions of a particular
kind of nogood called decision nogoods to prune symmetric parts of the search
space. Suppose we have a search that fixes a variable to a value at each decision
level. Suppose also that the search node reached via the search decisions d1, . . . , dk
has no solutions. Then, we can derive the decision nogood ¬(d1 ∧ · · · ∧ dk). If σ is
a symmetry of the problem, then the symmetric version of the decision nogood is
also valid, that is, ¬(σ(d1)∧· · ·∧σ(dk)) holds. SBDS and SBDD use this knowledge
to eliminate from the search any other search node that can later be reached by
the set of symmetric decisions {σ(d1), . . . , σ(dk)}.

Example 1 Consider a simple constraint problem with variables x1, x2, x3, x4, all
with initial domain {1, 2, 3, 4}, and two constraints: x1 + x2 + x3 + x4 ≤ 8 and
alldiff ({x1, x2, x3, x4}). All variables in this problem are interchangeable, that is,
every permutation of the variables is a symmetry. Assume that during the search
we make the following two decisions: x1 = 1, x2 = 2. Propagating the alldiff
constraint forces x3 ≥ 3, x4 ≥ 3, which violates the linear constraint. This conflict
leads to the decision nogood ¬(x1 = 1∧x2 = 2). We can apply any of the variable
symmetries in the problem to this nogood to get other valid nogoods, such as
¬(x1 = 1 ∧ x3 = 2) and ¬(x4 = 1 ∧ x1 = 2). ⊓⊔

While SBDS and SBDD only use decision nogoods, LCG and Boolean Satisfia-
bility (SAT) solvers use what are known as First Unique Implication Point (1UIP)
nogoods. 1UIP nogoods have empirically been found to be much stronger than
decision nogoods in terms of their pruning power in the non-symmetric case [34].
Clearly, it would be interesting to see if the extra pruning power of 1UIP nogoods
carries over to the symmetric case.

In this paper, we show how to combine an LCG solver with dynamic symme-
try breaking methods that, like SBDS, work by posting symmetric nogoods. This
combination can be understood either as extending the LCG solver to post sym-
metric versions of its 1UIP nogoods, or as extending SBDS to make use of 1UIP
nogoods. We call our new method SBDS-1UIP. The strength of our method comes

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

from the fact that SBDS only uses simple decision nogoods involving equality lit-
erals on the decision variables, whereas the 1UIP nogoods derived by LCG solvers
may involve equality, disequality and inequality literals on any problem variable
(including intermediate variables introduced by the solver). Furthermore, we for-
mally show that SBDS-1UIP is at least as strong as SBDS, and that it can be
strictly stronger on some problems. In fact, SBDS-1UIP allows us to exploit types
of symmetries that no other general symmetry breaking method we are aware of
can exploit.

Finally, we show that, with a slight modification, SBDS-1UIP can be adapted
to exploit almost symmetries [20], that is, symmetries that would appear in the
problem if a small set of constraints was removed from it. Almost symmetries are
important because they appear in many real world problems and can often be
exploited to yield significant speedups. Unfortunately, they are not well behaved
mathematically and it is difficult to adapt traditional symmetry breaking meth-
ods such as lex-leader static symmetry breaking constraints [6], SBDS or SBDD
to exploit them. While there are a few theoretical works in this area [16,17], there
exists only one implementation of a general method for exploiting almost symme-
tries [20]. Our new method for exploiting almost symmetries using SBDS-1UIP is,
therefore, an important contribution to this area.

The rest of the paper is organized as follows. Section 2 provides our definitions
and describes LCG and SBDS. Section 3 describes the SBDS-1UIP method, while
Section 4 describes its implementation. Section 5 proves that symmetric 1UIPs are
at least as strong as their associated symmetric decision nogoods, while Section 6
shows that symmetric 1UIPs can be strictly stronger. Section 7, shows how SBDS-
1UIP can be modified to exploit almost symmetries. Section 8 discussed related
work. Section 9 presents experimental results. And finally, Section 10 concludes.

2 Background

Let vars(O) denote the set of variables of any syntactic object O, |S| denote the
cardinality of set S, ≡ denote syntactic identity, and |= denote logical implication.
A Constraint Satisfaction Problem (CSP) is a triple (V,D,C), where V is a set of
variables,D is a set of unary constraints (the domain), and C is a set of constraints.
For each variable x ∈ V , we can see the domain D as containing exactly one unary
constraint of the form x ∈ D(x), where D(x) is a finite set of values defining the
values that variable x can take. Domain D is said to be stronger than domain D′

if D |= D′.

A pair of P = (V,D,C) is of the form x 7→ d where x ∈ V and d ∈ D(x).
We denote the set of all pairs of P by pairs(P). A pairset of P is a subset of
pairs(P), and a valuation of P over X ⊆ V is a pairset that contains exactly one
pair x 7→ d for each variable x ∈ X. Where the identity of P is clear, we omit the
“of P” part. A constraint c ∈ C over a set X ⊆ V of variables is a set of valuations
over X, and we say that scope(c) = X. Valuation θ over scope(c) is allowed by c

if θ ∈ c. Valuation θ over X ⊆ V satisfies c if scope(c) ⊆ X and the projection of
θ over scope(c) — defined as {x 7→ d | x 7→ d ∈ θ, x ∈ scope(c)} — is allowed by
c. If valuation θ over X ⊆ V does not satisfy constraint c and scope(c) ⊆ X, we
say that θ violates c. For brevity, constraints are usually written intensionally as

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

formulas (e.g., x1+x2 = x3) from which the allowed valuations can be determined.
A solution of P is a valuation over V that satisfies every c ∈ C.

In an abuse of notation, if a symbol A refers to a set of constraints {c1, . . . , ck},
we will often also use A to refer to constraint c1 ∧ · · · ∧ ck. This allows us to avoid
repetitive use of conjunction symbols. It should be clear from the context which
meaning we take: if we apply set operators to A like ∈,∪,∩, we are treating A as
a set of constraints, while if we apply logical operators to A like ∧,∨, |=, we are
treating A as a constraint.

Constraint propagation infers new information about the possible values of
variables V from CSP P = (V,D, C) by using the domain D and the constraints
c ∈ C of the problem. The propagator of a constraint c, denoted prop(c), is a
function that maps a domain D to a set U of unary constraints, each of which
is either false or a constraint over a single variable in scope(c), such that each
constraint in U is a logical consequence of c and D. We can use the propagation of
c to create a new stronger domain D′ given by D′ = D ∧ prop(c)(D). Clearly the
two problems P and (V,D′, C) are equivalent. A propagator prop(c) is a bounds
propagator if U is always a conjunction of inequality literals or {false}.

Propagation is the process or repeatedly applying propagation on all con-
straints in the problem until no new information is created. Let propfix (C,D) = D′

characterize the propagation engine of our solver, i.e., propfix takes the constraints
C and the current domain D and returns a new stronger domain D′ obtained by
repeatedly applying propagation for every constraint c ∈ C until the domain no
longer changes.

Constraint programming solvers solve a CSP by interleaving search with prop-
agation as follows. We begin with the original problem (V,D,C) at the root of
the search tree. At each node in the search tree, we apply the propagation engine
to the current domain D to determine a new domain D′ = propfix (C,D). If D′

is equivalent to false (i.e., ∃x ∈ V, |D′(x)| = 0), the subtree has no solution and
the solver backtracks. If all the variables are assigned (i.e., ∀ x ∈ V, |D′(x)| = 1)
and no constraint is violated, then a solution has been found and the solver can
terminate. If neither of these cases hold, then the solver splits the problem into a
number of more constrained subproblems and searches each of those in turn. The
problem is split by making different decisions di down each branch, e.g., x = 1
down one branch and x 6= 1 down the other, or x ≤ 3 down one and x > 3
down the other, etc. We assume that all decisions are unary constraints of the
form x = v, x 6= v, x ≥ v, x ≤ v. While this is not a strong restriction, it does
rule out some kinds of search. Given a node s in the search tree, we will denote by
DS(s) the sequence [d1, . . . , dk] of decisions taken to reach s. Note that s implicitly
represents the CSP (V,D,C ∪ {d1, . . . , dk}).

2.1 Lazy Clause Generation

Lazy Clause Generation (LCG) extends a constraint propagation solver by record-
ing the effects of propagation in terms of literals, and using this to derive nogoods
during search which are then used as propagators to reduce the search space. A
nogood n is a constraint of the form ¬(l1∧· · ·∧ lk), where each literal li is a unary
constraint, and n is implied by the problem constraints, i.e., D ∧ C |= n. In other
words, the problem constraints imply that there is no solution in which all li literals

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

are satisfied. In practice and due to the way propagation works by modifying the
domain of the variables, the literals in a nogood are always either equality literals
(x = d for d ∈ D(x)), disequality literals (x 6= d for d ∈ D(x)), or inequality literals
(x ≥ d or x ≤ d for d ∈ D(x)). Given the nogood ¬(l1∧· · ·∧lk), we shall sometimes
use its equivalent Horn clause representation l1 ∧ · · · ∧ lk−1 → ¬lk. Given two no-
goods with complementary terms a and ¬a, we can resolve them together to get a
new nogood, i.e., ¬(a∧l1∧· · ·∧lk)∧¬(¬a∧l

′
1∧· · ·∧l

′
m) |= ¬(l1∧· · ·∧ln∧l

′
1∧· · ·∧l

′
m).

LCG solvers derive nogoods by instrumenting their propagators to explain
each of their propagations using a nogood. In particular, suppose the propagator
for constraint c with current domain D makes a (unary) inference m, i.e., m ∈
prop(c,D) and, therefore, c∧D |= m. An explanation for this inference expl(m) is
a nogood l1∧· · ·∧ lk → m such that c |= expl(m) and D |= l1∧· · ·∧ lk. Intuitively,
the nogood expl(m) explains why m has to hold given c and the current domain
D. We can consider expl(m) as the fragment of the constraint c from which we
inferred that m has to hold. When the propagation infers false with explanation
l1 ∧ · · · ∧ lk → false , the associated nogood ¬(l1 ∧ · · · ∧ lk) is referred to as the
conflicting nogood.

Example 2 Given constraint x ≤ y and current domain x ∈ {3, 4, 5}, the prop-
agator may infer y ≥ 3 with explanation x ≥ 3 → y ≥ 3. If y were known
to have domain {1, 2}, then the propagator might infer false with explanation
x ≥ 3 ∧ y ≤ 2 → false, where ¬(x ≥ 3 ∧ y ≤ 2) is the conflicting nogood. ⊓⊔

These explanations form an acyclic implication graph where each node corre-
sponds to a newly inferred literal m obtained by prop(c,D), and there are edges
from each node li, 1 ≤ i ≤ k occurring on the left hand side of expl(m) to m.
Acyclicity follows since we add a new node in the graph m corresponding to a
new inference m ∈ prop(c,D) and, hence, all edges to m are from literals that
were already true in D and hence already exist in the graph. Since we only add
edges from nodes already in the implication graph to new nodes just added to the
implication graph, the graph is always acyclic. Each literal has a decision level,
defined as the depth in the search tree at which the literal was first inferred to be
true. Since the root is defined as depth 0, literals that are true at the root have
decision level 0.

Whenever a conflict is found by an LCG solver, the implication graph can
be analyzed in order to derive a 1UIP nogood which is asserting (always asserts
new information upon backtracking), quite general (still close to the cause of the
conflict) and fast to compute. This is done by repeatedly resolving the conflicting
nogood with explanation nogoods, resulting in a new nogood for the problem, until
it contains at most one literal from the last decision level. Therefore, every time
we have a nogood ¬(a∧ l1∧· · ·∧ lk) we look for the explanation of the last inferred
literal a, l′1 ∧ · · · ∧ l′m → a, and resolve the two. In terms of the implication graph,
this is the same as eliminating a from the nogood and adding to it the conjunction
of the literals whose edges end in a. Let resolve(n1, n2) denote the resolution of
two nogoods n1 and n2. The algorithm for deriving the 1UIP nogood is as follows:

derive1UIP()
n := conflicting nogood
while (n has more than one literal in the last decision level)

a := last literal to be inferred among literals in n

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

n := resolve(n, expl(a))
return n

The one remaining literal from the last decision level in n is called the asserting
literal. Note that we can eliminate from n any literal that is true at the root level
(i.e., any literal with level 0), as such literals are globally true and can be safely
removed.

Example 3 Consider again the simple constraint problem from Example 1 with
variables x1, x2, x3, x4, all with initial domain {1, 2, 3, 4}, and two constraints:
x1+x2+x3+x4 ≤ 8 and alldiff ({x1, x2, x3, x4}). Figure 1 shows the relevant part
of the implication graph already computed when propagation infers false after the
sequence of decisions [x1 = 1, x2 = 2]. The double boxes indicate decision literals
while the dashed lines partition literals into decision levels. Note that literals which
are true at the 0th level, e.g., x1 ≥ 1 are technically part of explanations, but can
be ignored for the purpose of conflict analysis.

To obtain the 1UIP nogood using the derive1UIP algorithm, we start with the
conflict nogood ¬(x2 ≥ 2 ∧ x3 ≥ 3 ∧ x4 ≥ 3), which contains every literal directly
connected to the false conclusion. We have two literals from the last decision level
(x3 ≥ 3 and x4 ≥ 3). Since x4 ≥ 3 was the last literal to be inferred of those two,
we resolve the current nogood with expl(x4 ≥ 3) ≡ x4 ≥ 2 ∧ x4 6= 2 → x4 ≥ 3,
yielding the new nogood: ¬(x2 ≥ 2 ∧ x3 ≥ 3 ∧ x4 ≥ 2 ∧ x4 6= 2). In other words,
we remove x4 ≥ 3 from the nogood and add to it the conjunction of the literals
whose edges end in x4 ≥ 3, according to the implication graph. Since we still have
two literals from the last decision level (x3 ≥ 3 and x4 6= 2), we choose to resolve
with expl(x3 ≥ 3) ≡ x3 ≥ 2∧x3 6= 2 → x3 ≥ 3, yielding: ¬(x2 ≥ 2∧x3 ≥ 2∧x3 6=
2 ∧ x4 ≥ 2 ∧ x4 6= 2). Since we still have two literals from the last decision level
(x3 6= 2 and x4 6= 2), we choose to resolve with expl(x4 6= 2) ≡ x2 = 2 → x4 6= 2,
yielding: ¬(x2 ≥ 2 ∧ x3 ≥ 2 ∧ x3 6= 2 ∧ x4 ≥ 2 ∧ x2 = 2). Since we still have two
literals from the last decision level (x3 6= 2 and x2 = 2), we choose to resolve with
expl(x3 6= 2) ≡ x2 = 2 → x3 6= 2, yielding: ¬(x2 ≥ 2∧x3 ≥ 2∧x4 ≥ 2∧x2 = 2). At
this point, there is only one literal from the last decision level left (x2 = 2) and we
can terminate. The asserting literal is x2 = 2 and we write the 1UIP nogood as a
Horn clause with this literal as the head, i.e., as x2 ≥ 2∧x3 ≥ 2∧x4 ≥ 2 → x2 6= 2.

Contrast the 1UIP nogood with the decision nogood which just collects all
decision literals that are antecedents of the failure, in this case x1 = 1∧ x2 = 2 →
false or equivalently x1 = 1 → x2 6= 2. It propagates that x2 6= 2 strictly less often
than the 1UIP nogood, since x1 = 1 will always ensure that x2 ≥ 2∧x3 ≥ 2∧x4 ≥
2. The propagation in the reverse direction is incomparable, but in practice this
is not the important direction of propagation of the nogood.

2.2 Symmetries

Given a permutation σ on pairs(P), we extend σ to map a subset θ of pairs(P) in
the obvious manner: σ(θ) = {σ(x 7→ v) | x 7→ v ∈ θ}. Note that it is possible for
σ to map valuations to non-valuations and vice versa.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

level 1

✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤
✤ level 2

x1 = 1

&&

##

��

x2 = 2

##

��

false

x2 6= 1
""

x2 ≥ 2

11

x3 6= 1
""

x3 ≥ 2
**

x3 6= 2
""

x3 ≥ 3

LL

x4 6= 1
""

x4 ≥ 2
**

x4 6= 2
""

x4 ≥ 3

NN

Fig. 1 Implication graph for Example 3. Decision literals are double boxed. Decision levels
are separated by dashed lines.

A solution symmetry of problem P ≡ (V,D,C) is a permutation σ on pairs(P)
that preserves the set of solutions of P [5], that is, σ maps solutions of P to
solutions of P and non-solutions of P to non-solutions of P .

A symmetry group of problem P is a set S of solution symmetries of P , s.t. S is a
group under the operation of function composition, that is, ∀σ1, σ2 ∈ S. σ1 ·σ2 ∈ S,
∀σ ∈ S. σ−1 ∈ S, and the identity symmetry is in S. The orbit of pairset θ under
the symmetry group S is the set: {σ(θ) | σ ∈ S}. Set S′ is a generating set of
symmetry group S if it generates S, that is, if its closure under composition and
inverse is equal to S.

Two important kinds of solution symmetry are induced by permuting either
the variables or the values in P . In particular, a permutation s on the variables
in V induces a permutation σs on pairs(P) by defining σs(x 7→ d) = s(x) 7→ d.
A variable symmetry is a permutation of the variables in P whose induced pair
permutation is a solution symmetry [29]. A set S of value permutations sx, one
for the values in each D(x), x ∈ V , induces a permutation σS on pairs(P) by
defining σS(x 7→ d) = x 7→ sx(d). A value symmetry is a set of value permutations
whose induced pair permutation is a solution symmetry [29]. Like most other
papers in the area, we only discuss value symmetries where the values are treated
equivalently across variables, i.e. where si = sj for all si, sj ∈ S and, therefore, a
single si serves as a representative of S.

Variable (value) symmetries often appear in the form of interchangeable vari-
ables (values) [19], that is, a set of variables (values) W s.t. any permutation of
W is a variable (value) symmetry of the CSP.

Example 4 Consider problem P ≡ (V,D,C), where V ≡ {x1, x2, x3}, D ≡ {xi ∈
{1, . . . , 5} | i ∈ {1, 2, 3}} and C ≡ {alldiff (x1, x2, x3), x1 + x2 + x3 ≥ 10}. Vari-
ables x1, x2 and x3 are interchangeable since any permutation of V is a variable
symmetry of P . Let S be the set of all permutations of V . Then, S induces a
symmetry group of P and the orbit of valuation θ ≡ {x1 7→ 1, x2 7→ 2, x3 7→ 3}
under S is {{x1 7→ 1, x2 7→ 2, x3 7→ 3}, {x1 7→ 1, x2 7→ 3, x3 7→ 2}, {x1 7→ 2, x2 7→
1, x3 7→ 3}, {x1 7→ 2, x2 7→ 3, x3 7→ 1}, {x1 7→ 3, x2 7→ 1, x3 7→ 2}, {x1 7→ 3, x2 7→
2, x3 7→ 1}}.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

DS(p)=[d1,...,dk−1]

��������s
dk

♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦
¬dk,∀σ∈Σ:σ(d1)∧···∧σ(dk−1)→σ(¬dk)

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖

�������� ��������

Fig. 2 Overview of SBDS decision point.

Consider now the problem P ≡ (V,D,C), V ≡ {x1, x2, x3}, D ≡ {xi ∈
{1, . . . , 5} | i ∈ {1, 2, 3}}, C ≡ {alldiff (x1, x2, x3), x1 6= x2, x2 6= 2, x3 6= 4}. Values
{1, 3, 5} on {x1, x2, x3} are interchangeable, since any permutation of {1, 2, 3, 4, 5}
that fixes 2 and 4 is a value symmetry of P . Let S be the set of all such value
symmetries. Then, S induces a symmetry group of P and the orbit of valuation
θ ≡ {x1 7→ 1, x2 7→ 2, x3 7→ 3} under S is {{x1 7→ 1, x2 7→ 2, x3 7→ 3}, {x1 7→
1, x2 7→ 2, x3 7→ 5}, {x1 7→ 3, x2 7→ 2, x3 7→ 1}, {x1 7→ 3, x2 7→ 2, x3 7→ 5}, {x1 7→
5, x2 7→ 2, x3 7→ 1}, {x1 7→ 5, x2 7→ 2, x3 7→ 3}}. ⊓⊔

A special case of solution symmetry, which we will call a valuation symmetry
(originally defined by [25]), occurs when σ maps all the literals of each variable to
the literals of one other variable only, i.e., there exists a variable permutation π s.t.
for all x and v, σ(x 7→ v) = π(x) 7→ v′ for some v′. This subclass of symmetries have
the property that σ always maps a valuation to another valuation. It includes many
common symmetries such as interchangeable variables, interchangeable values, or
interchangeable rows or columns in matrix problems. The advantage of valuation
symmetries is that it is easy to extend a valuation symmetry to map constraints to
constraints, since the mapping on variables is uniform. Given a valuation symmetry
σ, then σ(c) is the constraint with solutions {σ(θ) | θ ∈ c} and scope π(scope(c)).
For non-valuation symmetries this definition may not be meaningful since σ(θ)
may not be a valuation!

Example 5 Consider the n-queens problem modelled with variables x1, . . . , xn tak-
ing values from {1, . . . , n}, where xi = j represents the fact that the queen in the
ith row occurs in the jth column. The solution symmetry σ(xi 7→ j) = xj 7→ i,
which describes a diagonal flip, is clearly not a valuation symmetry since different
pairs for the same variable are mapped to pairs on different variables. When this
symmetry is applied to one of the constraints of the n-queens problem x1 6= x2+1,
it maps the solution θ = {x1 7→ 1, x2 7→ 1} of this constraint to the non-valuation
σ(θ) = {x1 7→ 1, x1 7→ 2}. ⊓⊔

2.3 Symmetry Breaking During Search

SBDS can be seen as an instance of the S-excluding search tree method of Backofen
and Will [1], but was independently developed by Gent and Smith [14]. SBDS

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

solves P ≡ (V,D,C) with set of solution symmetries S by performing a depth-
first search of a tree whose nodes have either zero or two children, with the left
and right children (if any) labelled by search decisions dk (an equality literal)
and ¬dk, respectively.

1 The search proceeds as usual until it backtracks to the
right child of a node s. Let DS(s) = [d1, . . . , dk−1], and assume the left child
of s is made with decision dk, as shown in Figure 2. Once the region under the
left child has been explored, every possible assignment that includes d1 ∧ · · · ∧ dk
has been examined and, therefore, we can exclude from the search any symmetric
assignment. SBDS achieves this by posting on the right child of s, for each solution
symmetry σ ∈ S, the constraint σ(d1) ∧ · · · ∧ σ(dk−1) → σ(¬dk). Note that since
each di is known to be an equality literal, computing σ(di) is very easy: let di be
of the form x = d and σ(x 7→ d) be x′ 7→ d′, then σ(di) = (x′ = d′). Further,
σ(¬di) = ¬σ(di) = ¬(x′ = d′).

SBDS posts the constraint σ(d1) ∧ · · · ∧ σ(dk−1) → σ(¬dk) only locally, that
is, on backtracking the constraint is removed. This is not only easy to implement
in a backtracking solver, it is also efficient because once we fail the right branch
we know that the parent node DS(s) = [d1, . . . , dk−1] is failed, and its parent will
post the stronger constraint σ(d1) ∧ · · · ∧ σ(dk−2) → σ(¬dk−1).

3 SBDS-1UIP

Our idea is to extend LCG by posting not only 1UIP nogoods but also their
symmetric versions. For this we need to be able to apply symmetries to nogoods
in such a way that we can efficiently obtain another nogood with the same form.
To do so, we define the application σ(n) of solution symmetry σ of P ≡ (V,C,D)
to nogood n of the form ¬(l1 ∧ · · · ∧ lk) as ¬(σ(l1) ∧ · · · ∧ σ(lk)), and prove that
the result is also a nogood if each li is either an equality or a disequality literal
(inequality literals will be discussed in Section 4.1).

Theorem 1 Let n be of the form ¬(l1∧· · ·∧lk), where each li is either an equality
or a disequality literal. Given a problem P ≡ (V,D,C) and a solution symmetry σ

of P , if n is a nogood of P , then so is σ(n) ≡ ¬(σ(l1) ∧ · · · ∧ σ(lk)).

Proof The theorem holds if no solution of P can satisfy σ(n). Let us reason by
contradiction and assume there is a solution θ of P such that θ satisfies σ(n). By
the definition of symmetry, σ−1(θ) must also be a solution of P .

For any equality literal x = d in l1 ∧ · · · ∧ lk, σ(x 7→ d) must be in θ and,
therefore, x 7→ d must be in σ−1(θ). Thus, σ−1(θ) satisfies every equality literal
in l1 ∧ · · · ∧ lk.

For any disequality literal x 6= d in l1 ∧ · · · ∧ lk, σ(x 7→ d) cannot be in θ and,
therefore x 7→ d cannot be in σ−1(θ). Thus, σ−1(θ) also satisfies every disequality
literal in l1 ∧ · · · ∧ lk. Since by assumption of nogood, P cannot have a solution
σ−1(θ) that satisfies every literal in l1 ∧ · · · ∧ lk, θ cannot exist. ⊓⊔

Using the above result, SBDS can be explained in terms of nogoods: it simply
detects that d1 ∧ · · · ∧ dk−1 → ¬dk is a nogood and uses it to post the symmetric

1 Note that while SBDS requires dk to be an equality literal, that formulation of [1] allows
dk to be any constraint.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

•
x3 = 3

⑦⑦
⑦⑦
⑦⑦
⑦

✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴ •

x6 ∈ {1, 2, 3, 4, 5}

✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴

❅❅
❅❅

❅❅
❅

•x2 = 2 •
x4 = 4

⑦⑦
⑦⑦
⑦⑦
⑦

✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖ • x7 ∈ {1, 2, 3}

✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎

•x1 = 1 •
x10 ∈ {2, 3, 5}

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐ •

x5 = 5

♦♦♦♦♦♦♦♦♦♦♦♦♦♦

❅❅
❅❅

❅❅
❅ • x8 ∈ {1, 2, 3}

•

⑦⑦⑦⑦⑦⑦⑦

x9 ∈ {1, 2, 3}

Fig. 3 A graph coloring problem where we can exploit additional symmetries.

nogood σ(d1)∧ · · · ∧ σ(dk−1) → ¬σ(dk) as a local constraint under the right child
of node s.

Extending LCG to use 1UIP nogoods is therefore very simple. Upon backtrack-
ing of node s, the LCG solver will derive some 1UIP nogood n ≡ (l1∧· · ·∧ lk−1 →
¬lk). Theorem 1 tells us that every symmetric version of this nogood σ(n) is also
a nogood. Therefore, if σ(n) is not globally satisfied already, we can post σ(n) as
a nogood.

Example 6 Consider the graph coloring problem where we aim to color the nodes
of a graph using a finite number m of colors with no adjacent nodes having the
same color. This can be modeled as CSP P ≡ (V,D,C) where the nodes are the
variables and the colors are the values, that is, where V has one integer variable
for each node, D assigns domain {1, . . . ,m} to every variable, and C ensures that
adjacent nodes have different colors. For the graph of Figure 3, V ≡ {x1, . . . , x10},
D(xi) = {1, . . . , 5}, i ∈ {1, . . . , 10}, and for each edge in the graph between node i

and node j, C includes constraint xi 6= xj . Clearly, all 5 colors are interchangeable,
that is, every permutation of the values is a value symmetry.

Assume we have made decisionsDS ≡ x1 = 1∧x2 = 2∧x3 = 3∧x4 = 4∧x5 = 5,
and propagation has produced the domains shown in Figure 3. Suppose we decide
to try x6 = 1 next, obtaining by propagation x7 ∈ {2, 3}, x8 ∈ {2, 3}, x9 ∈ {2, 3}
and we then decide to try x7 = 2. This forces x8 = 3, x9 = 3, which conflicts. The
decision nogood from this conflict is: DS ∧ x6 = 1 → x7 6= 2. The 1UIP nogood
obtained from the implication graph shown in Figure 4 by applying the derive1UIP
algorithm to conflict nogood x8 = 3 ∧ x9 = 3 → false is: x8 6= 1 ∧ x8 6= 4 ∧ x8 6=
5 ∧ x9 6= 1 ∧ x9 6= 4 ∧ x9 6= 5 → x7 6= 2.

Upon backtracking from decision x7 = 2, SBDS will not be able to prune
anything, since for every symmetry σ except the identity, σ(DS ∧ x6 = 1) is
inconsistent with DS ∧ x6 = 1 (at least two variables will be assigned to different
values), so the LHS is false and the symmetric nogood is trivially satisfied. In

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

level 1 level 2 level 3 level 4 level 5 level 6 level 7

x1 = 1 x2 = 2 x3 = 3 x4 = 4 x5 = 5 x6 = 1 x7 = 2

x2 6= 1 x3 6= 2 x5 6= 3 x7 6= 4 x7 6= 5 x7 6= 1

x10 6= 1 x4 6= 2 x8 6= 4 x8 6= 5 x8 6= 1 x8 6= 2 x8 = 3 false

x9 6= 4 x9 6= 5 x9 6= 1 x9 6= 2 x9 = 3

Fig. 4 Relevant part of the implication graph for the graph coloring problem.

contrast, SBDS-1UIP will be able to prune. For example, if we apply the value
symmetry between 2 and 3 to the 1UIP nogood, we get: x8 6= 1 ∧ x8 6= 4 ∧ x8 6=
5 ∧ x9 6= 1 ∧ x9 6= 4 ∧ x9 6= 5 → x7 6= 3, which immediately prunes the value of
3 from x7. Similarly, upon backtracking from decision x6 = 1, SBDS can prune
nothing while SBDS-1UIP can: the 1UIP nogood is x7 6= 4∧x7 6= 5∧x8 6= 4∧x8 6=
5 ∧ x9 6= 4 ∧ x9 6= 5 → x6 6= 1, and we can apply the value symmetries between 1
and 2, and between 1 and 3 to prune values 2 and 3 from x6.

Interestingly, the other commonly used symmetry breaking techniques are also
powerless here. In particular, as SBDD is equivalent in power to SBDS, it cannot
exploit this symmetry either. Also, the standard lex-leader symmetry breaking
constraint for a value symmetry is: min{i|xi = 1} < · · · < min{i|xi = 5} which
simply states that value 1 has to be used by a “smaller” variable than value 2, etc.
Since all 5 values have already been used in x1, . . . , x5 and in the right order, the
symmetry breaking constraint is already satisfied and can prune nothing further.

Even the traditional conditional symmetry breaking constraints [13] cannot ex-
ploit the symmetries that SBDS-1UIP exploits here. In a graph coloring problem,
we can post conditional symmetry breaking constraints to exploit more symme-
tries than a static lex-leader symmetry breaking constraint. In particular, since
only the values of the nodes in the current labelled frontier have any effect on the
remaining variables, there are sometimes conditional symmetries in the subprob-
lems. For example, given the current partial assignment, the values of x2 and x3

no longer affect those of x6, x7, x8, x9, x10. Thus, we can add the following con-
ditional symmetry: given condition x1 = 1 ∧ x4 = 4 ∧ x5 = 5, the values 2 and
3 are interchangeable on x6, x7, x8, x9, x10. However, the symmetry exploited by
SBDS-1UIP is the one between values 1 and 2, and between values 1 and 3, which
are not traditional2 value symmetries of this subproblem. ⊓⊔

We will discuss the difference between the power of these methods in more
detail in Section 6. Note that, in contrast to SBDS, it can be useful in SBDS-1UIP
to post σ(n) as a global rather than as a local constraint. This is because in SBDS,
the decision nogood derived at search node q is always subsumed by that derived
for its parent node and, therefore, it was sufficient to post σ(n) locally. However,

2 They are not value symmetries for all variables in the subproblem: they are for variables
x6, x7 and x8, but not for x9 and x10,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

x ≥ 3 ◦ ◦ ◦ ◦

D(x) 1 2 3 4 5 6

σ(D(x)) 4 2 3 1 5 6

σ(x ≥ 3) ◦ ◦ ◦ ◦

Fig. 5 Illustration of the mapping of inequality literal x ≥ 3 under the value symmetry σ

which swaps values 1 and 4.

the 1UIP nogood at the parent does not generally subsume the one at q and,
therefore, posting σ(n) globally might yield additional pruning.

4 Implementing SBDS-1UIP

There are three main issues encountered when implementing SBDS-1UIP. The
first two arise from the need to calculate the symmetric versions of 1UIP nogoods
that might involve inequality literals and might be defined not only on decision
variables but also on intermediate variables. The third issue arises from the need
to give up completeness in order to speedup the search. This section discusses
these three issues in more detail.

4.1 Inequality literals

Propagators often infer inequality constraints (in fact, that is the only constraint
inferred by bounds propagators). However, Theorem 1 assumes the nogoods con-
tain only equality and disequality literals. This is because it is easy to see (and
thus prove) that the application of any symmetry to an equality or disequality
literal is also an equality or disequality literal. This is, however, not so clear when
the symmetry is applied to an inequality literal xi ≥ v. If the symmetry is a valu-
ation symmetry, the meaning is well defined even if it is not necessarily a literal.
But we can extend the notion to an arbitrary solution symmetry σ by noting
that if l is a lower bound for xi’s original domain, then xi ≥ v is equivalent to
xi 6= l∧ xi 6= l+1∧ · · · ∧ xi 6= v− 1, and we can apply σ to each inequality literal
separately.

Example 7 Let x be a variable with domain D(x) = {1, 2, 3, 4, 5, 6}, and σ a value
symmetry swapping values 1 and 4. As shown in Figure 5, the set of solutions of
inequality x ≥ 3 (marked by circles) clearly forms a continuous domain, as repre-
sented by the lines connecting every possible solution at the top. In contrast, the
set of solutions of σ(x ≥ 3) does not (solutions x = 1 and x = 3 are disconnected
from each other and from the rest). If x ≥ 3 appears in a nogood we can first
convert it into x 6= 1 ∧ x 6= 2 and then apply the symmetry to each disequality
obtaining x 6= 4 ∧ x 6= 2. ⊓⊔

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Given the above discussion for any σ and variable x with initial domain
{l, . . . , u} we define

σ(x ≥ v) =
∧

v′∈{l,...,v−1} σ(x 6= l)

σ(x ≤ v) =
∧

v′∈{v+1,...,u} σ(x 6= l)

With this extension we have the following corollary to Theorem 1.

Corollary 1 Given a problem P ≡ (V,D,C) and a solution symmetry σ of P , if
n is a nogood of P , then so is σ(n). ⊓⊔

Note that for variable symmetries we can directly map inequality literals to
inequality literals. For other symmetries, each inequality literal may potentially
map to quite a large number of disequality literals. While this can significantly
increase the length of σ(n) compared to that of nogood n, the impact on perfor-
mance is not high. This is because the cost of propagating nogoods in LCG (and
SAT) solvers is not linear in the length of the nogood [26]. In practice, increasing
the length of the nogood typically does not increase its propagation cost by much.
The only real cost is the memory required to store the longer nogood, which is
rarely a problem on modern computers.

4.2 Intermediate variables

In practice CSPs are not quite as straightforward as the definitions provided in Sec-
tion 2 make them appear. It is common to model complex constraints using higher
order constructs, which in practice are decomposed into many smaller constraints
by introducing intermediate variables, that is, variables that are not present in the
original model. These variables appear in the constraints that actually are sent
to the solver. For example, a high level model written in the modeling language
MiniZinc [27] is first flattened into primitive constraints using the instance data,
with intermediate variables introduced as necessary. This flattened form is then
given to a solver which may, for example, introduce global propagators imple-
mented by decomposition.

Example 8 Consider the Concert Hall problem where we have k identical halls
and n orders for renting these halls, each order with an associated start time, end
time, and price. We can choose to accept each order or not but, if we accept the
order, we must schedule it in one of the k halls. Two accepted orders that overlap
in time cannot be scheduled in the same hall. The aim is to choose the orders (and
assign them a hall) that maximize the profit we can make. A MiniZinc [27] model
for the Concert Hall problem is as follows:

% ============ Parameters ============

int: n; % number of orders

int: k; % number of halls

set of int: Orders = 1..n; % set of possible orders

array[Orders] of int: start; % start[i]: start time for order i

array[Orders] of int: end; % end[i]: end time for order i

array[Orders] of int: price; % price[i]: price for order i

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

% o[i,j] = true iff orders i and j overlap

array[Orders,Orders] of bool: o = array2d(Orders, Orders,

[start[i] <= end[j] /\ start[j] <= end[i] | i in Orders, j in Orders]);

% ============ Variables ============

array[Orders] of var 1..k+1: x; % x[i] = j if order i is assigned hall j

var int: total; % objective var: total profit

% ============ Constraints ============

% orders that overlap cannot be assigned to the same hall

constraint forall (i, j in Orders where i < j /\ o[i,j]) (

forall (v in 1..k) (not(x[i] = v) \/ not(x[j] = v))

);

% objective function

constraint sum (i in Orders)

(bool2int(not(x[i] = k+1)) * price[i]) >= total;

solve maximize total;

When flattening high level constraints into primitive constraints, intermediate
variables might be added to represent the value of some expressions. For example,
for the above model the flattening process will add:

array[Orders,1..k+1] of var bool: neq;

constraint forall (i in Orders, v in 1..k+1)

(neq[i,v] <-> not(x[i] = v));

array[Orders] of var 0..1: b;

constraint forall (i in Orders) (b[i] = bool2int(neq[i,k+1]));

thus introducing intermediate Boolean variables neq[i, v] to represent x[i] 6= v and
intermediate 0-1 integer variables b[i] to represent x[i] 6= k + 1.

Since intermediate variables are not present in the original model, they are
not likely to be covered by any declarations about symmetries. This leads to an
important problem when manipulating 1UIP nogoods. 1UIP nogoods often contain
literals from such intermediate variables. However, if the symmetry was defined
only for the variables in the original model, the solver will be unable to derive the
symmetric versions of the 1UIP nogoods, since the symmetries do not apply to
such literals.

There are several ways to handle this problem. First, we can modify the model
to add any intermediate variables introduced by flattening or by the solver and,
then, either ask the user or use an automatic inference system (such as [23]) to
provide symmetry declarations that include those intermediate variables. Alterna-
tively, we can modify the solver’s conflict analysis algorithm to ensure all literals in
the nogoods it derives only contain variables for which the symmetries are defined.

Example 9 Consider the model of the Concert Hall problem provided in Exam-
ple 8. In this model, the values in the set {1, . . . , k} (but not k+1, which indicates
an order that is not accepted) are interchangeable. There are also data-dependent
symmetries: if orders i and j have the same start time, end time and price, in a
given instance of the problem, then the variable permutation that swaps x[i] and
x[j] is a solution symmetry of that instance.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Suppose we want to extend our symmetries to cover the intermediate variables
neq[i, v] and b[i] introduced by the flattening of the model as described in Exam-
ple 8. Any value symmetry σ permuting the values in {1, . . . , k} on x[i] should also
permute the variables neq[i, v], since they depend on the value of x[i]. However,
b[i] remains invariant, since the truth value of x[i] 6= k + 1 would not be changed
by σ. For example, swapping values of 1 and 2 on x[i] should also swap neq[i, 1]
with neq[i, 2] for each i, and leave the b[i]’s unchanged. Thus, this value symmetry
becomes a variable/value symmetry (that simultaneously swaps the sequence of
pairs 〈x[i] 7→ 1,neq[i,1] 7→ 0, neq[i, 1] 7→ 1〉 with the pairs 〈x[i] 7→ 2, neq[i, 2] 7→ 0,
neq[i, 2] 7→ 1〉) when extended to the intermediate variables.

Consider now a variable symmetry σ that swaps x[i] and x[j]. Clearly, if we
swap x[i] with x[j], then we must also swap neq[i, v] with neq[j, v] for each v, and
b[i] with b[j]. Thus, this variable symmetry becomes a variable sequence symmetry
(that simultaneously swaps the sequence of variables 〈x[i], b[i]〉 with 〈x[j], b[j]〉).

⊓⊔

Whenever it is not practical to ask the user to extend the known symmetries
to cover intermediate variables, we modify the solver to prevent any literals on
intermediate variables from appearing in the inferred nogoods. To achieve this, we
first give to the solver the set of variables that are actually covered by the known
symmetries and, importantly, require the search only to make decisions on the
covered variables. All other variables are considered intermediate variables. We
then modify the conflict analysis algorithm described in Section 2.1, by adding an
additional step: if the nogood contains any literal l from an intermediate variable,
we eliminate the nogood by resolving it with the explanation for that literal. This is
guaranteed to be possible if no decisions are made on intermediate variables since,
then, literals on intermediate variables cannot be decision literals and, therefore,
must have an explanation. The conflict analysis will now terminate with a nogood
free of any literals on intermediate variables, for which we know how to calculate
its symmetric versions.

Example 10 Assume the original conflict analysis algorithm has derived the no-
good n ≡ ¬(b[1] = 1 ∧ x[2] = 1 ∧ x[3] = 2), which has literals on intermediate
variable b[1]. The modified conflict analysis algorithm will eliminate literal b[1] = 1
by using its explanation neq[1, k+1] → (b[1] = 1), and then eliminate neq[1, k+1]
by using its explanation (x[1] 6= k + 1) → neq[1, k + 1]. The resulting nogood is
n ≡ ¬(x[1] 6= k+1∧x[2] = 1∧x[3] = 2), where all literals are defined on variables
covered by known symmetries. ⊓⊔

Requiring search decisions not to be made on intermediate variables is not a
strong restriction, since most search strategies already do this. If the search strat-
egy is specified on the model variables it will automatically meet this requirement.
In fact, this restriction is clearly also a requirement for SBDS, even though we
are unaware of any discussion of this issue in the literature. Note however, that
searching on intermediate variables is sometimes highly useful, as it is the case for
domwdeg search [3] or activity-based search [26]. For these searches, extending the
symmetries to cover the intermediate variables might be quite useful.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4.3 Trading Completeness for Speed

A key requirement for effective symmetry breaking is to find the right balance be-
tween the overhead of the method and the pruning it provides. The original SBDS
method [14] is complete, that is, the search is guaranteed to find a single repre-
sentative of each group of symmetric search nodes (representing symmetric sub-
problems) and, thus, solutions. While this might be required by some applications,
it can impose a very significant overhead to the search. Some variants of SBDS,
such as the shortcut SBDS method described in the original SBDS paper [14], the
STAB method [30], and the more recent Lightweight Dynamic Symmetry Break-
ing (LDSB) method [21], sacrifice completeness in order to reduce this overhead.
All three methods disregard any symmetry that cannot immediately be used to
prune something, that is, they disregard symmetry σ if σ(DS) 6= DS (and it is
not obvious that DS |= σ(DS)), where DS is the set of decisions taken to reach
the current node. Such strategies can dramatically reduce the overhead associated
with keeping track of the all symmetries while retaining most (sometimes all) of
the pruning power of complete methods, thus often being faster than the complete
methods.

Our implementation is based on the same ideas. We are only interested in gen-
erating symmetric nogoods that can immediately propagate and prune something.
We also do not want to calculate exponentially many symmetric nogoods. Thus,
given a 1UIP nogood l1 ∧ . . . ∧ lk−1 → ¬lk, we calculate its symmetric nogoods
only using symmetries that are: 1) pairwise swaps, 2) map ¬lk to a literal that is
not already true in the current domain, and 3) map every li to a literal that is
already true in the current domain. Further, we compose symmetries in the same
way as LDSB, that is, for each symmetric nogood we find, we apply all the gen-
erator symmetries to it again to see if something new can be found. We do this
recursively until we can get no new pruning. Once a symmetric nogood is found,
we handle it just as we do for the 1UIP nogoods derived by the solver, i.e., an
activity count is kept for each nogood and it is incremented whenever the nogood
is used. Periodically, when the number of nogoods becomes too high, the least
active half of the nogoods are removed.

Our implementation of SBDS-1UIP is described by procedure sbds-1uip in Fig-
ure 6. The procedure receives a nogoodB0 → h0 of a given problem P , a generating
set S of the symmetry group of P to be exploited, and the current domain D. We
immediately propagate the nogood—since the body B0 must be true in D, we
simply need to add the head h0 to D (line 2). The algorithm keeps track of newly
discovered nogoods New, which initially contains only B0 → h0 (line 3). For each
new nogood B → h and each symmetry σ ∈ S, we create the symmetric version
B′ → h′ (lines 7-8). If the symmetric body B′ is true in D and the head h′ is not,
we add the symmetric version to the new nogoods and propagate it by adding h′

to D (lines 9-11).

Note that a nogood cannot be added twice since its head will already be true
in D. Note also that, since the sbds-1uip procedure disregards some nogoods inside
the while loop, it might miss some symmetric nogoods that would have otherwise
been obtained by composition.

Example 11 Consider the 1UIP nogood from Example 3: x2 ≥ 2 ∧ x3 ≥ 2 ∧ x4 ≥
2 → x2 6= 2 which, after replacing inequalities by disequalities, appears as x2 6=

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 sbds-1uip(B0 → h0, S,D)
2 D := D ∪ {h0}
3 New := {B0 → h0}
4 while (∃B → h ∈ New)
5 New := New \ {B → h}
6 for σ ∈ S

7 h′ := σ(h)
8 B′ := {σ(l) | l ∈ B}
9 if (D |= B′ and D 6|= h′)
10 D := D ∪ {h′}
11 New := New ∪ {B′ → h′}

Fig. 6 The SBDS-1UIP algorithm.

1∧ x3 6= 1∧ x4 6= 1 → x2 6= 2. This nogood was inferred after failure was detected
due to decisions x1 = 1 and x2 = 2. Then, the procedure examines the generating
set S ≡ {σ1, σ2, σ3}, where variable symmetry σ1 swaps x1 and x2, σ2 swaps x2

and x3, and σ3 swaps x3 and x4 (which generates the symmetry group where these
three variables are interchangeable). Symmetry σ1 gives x1 6= 1 ∧ x3 6= 1 ∧ x4 6=
1 → x1 6= 2, which is redundant since x1 6= 2 is already known to hold. Symmetry
σ2 gives x3 6= 1∧x2 6= 1∧x4 6= 1 → x3 6= 2, which causes x3 6= 2 to be added to D

and is added to New. Symmetry σ3 gives x2 6= 1∧x4 6= 1∧x3 6= 1 → x2 6= 2 which
is also redundant. Applying the elements of the generating set to this discovered
nogood only adds the nogood x4 6= 1 ∧ x2 6= 1 ∧ x3 6= 1 → x4 6= 2 to New and
x4 6= 2 to D. Applying the generating set to this nogood adds nothing to New

and the process finishes. ⊓⊔

5 SBDS-1UIP vs SBDS

It is difficult to analyse the power of SBDS-1UIP, since it depends on the strength
of the propagators used and the way in which they explain their propagations.
However, we can show that under some fairly reasonable assumptions regarding
the monotonicity and symmetricity properties of the solver’s propagation engine, a
complete SBDS-1UIP system (i.e., one that applies all symmetries in the problem
to its nogoods) is at least as strong as the complete SBDS method. Intuitively, a
propagation engine is monotonic if when given a smaller domain as input, it always
returns a smaller domain as output. It is symmetric if when given a symmetric
domain as input, it returns a symmetric domain as output. More formally:

Definition 1 The propagation engine propfix (C,D) is monotonic if whenever
D′ |= D, then propfix (C,D′) |= propfix (C,D).

Definition 2 Let S be a symmetry group of P ≡ (V,D,C). The propagation en-
gine propfix (C,D) is symmetric w.r.t. S if: ∀σ ∈ S and ∀l, d1, . . . , dk ∈ lit(P) where
d1, . . . , dk are decision literals, if propfix (C,D∧

∧k
j=1 dj) |= l, then propfix (C,D∧

∧k
j=1 σ(dj)) |= σ(l).

Theorem 2 below tells us that, for the monotonic and symmetric propagation
engines, the symmetric versions of the 1UIP nogoods are at least as powerful as the
symmetric versions of the decision nogoods in terms of their ability to find failure

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

in subproblems. In the next section, we show that SBDS-1UIP can be strictly
stronger than SBDS for some problems.

Theorem 2 Let S be a symmetry group of problem P ≡ (V,D,C), ndec ≡ ¬(d1 ∧
· · · ∧ dk) be the decision nogood derived from the failure of subproblem P ′ ≡
(V,D,C ∪ {d1, . . . , dk}), and n1uip ≡ ¬(l1 ∧ · · · ∧ lm) be the 1UIP nogood derived
from P ′. If the propagation engine propfix (C,D) is monotonic and symmetric for
S, then for any σ ∈ S, and any fixpoint domain D′ = propfix (C,D′), if D′ violates
σ(ndec), then it also violates σ(n1uip).

Proof Suppose domain D′ violates σ(ndec), i.e., all the σ(di) are true in D′. By
assumption, the decisions d1, . . . , dk in subproblem P ′ were enough for the propa-
gation engine to infer each of l1, . . . , lm and, therefore, propfix (C,D ∧

∧k
j=1 dj) |=

li, 1 ≤ i ≤ m. Hence, since the propagation engine is symmetric propfix (C,D ∧∧k
j=1 σ(dj)) |= σ(li), 1 ≤ i ≤ m. Since D′ |= D and, by assumption D′ |=

∧k
j=1 σ(dj), we have by monotonicity that D′ = propfix (C,D′) |= propfix (C,D ∧

∧k
j=1 σ(dj)) |= σ(li), 1 ≤ i ≤ m. Hence, D′ also violates σ(n1uip). ⊓⊔

A sufficient (and very common) condition for the propagation engine to be
monotonic is for all the individual propagators to be monotonic. A sufficient con-
dition for the propagation engine to be symmetric w.r.t. a valuation symmetry
group S is for every propagator to have a symmetric counterpart of the same
propagation strength. That is, ∀c ∈ C, ∀σ ∈ S, there is a propagator for σ(c) such
that σ(propfix ({c},D)) = propfix ({σ(c)}, σ(D)).

Example 12 Consider problem P ≡ ({x1, x2, x3}, D, {x1 6= x2, x2 6= x3, x3 6= x1})
where variables x1, x2, x3 are interchangeable. Every permutation of these vari-
ables gives a valuation symmetry. If the propagators for all three constraints are
of the same consistency level (e.g., all domain consistent, or all checking only),
then the propagation engine is symmetric. If on the other hand, the propagator
for x1 6= x2 and x2 6= x3 are domain consistent but the propagator for x3 6= x1 is
only checking, then the engine is not symmetric. For example, given x2 = 1, the
propagation engine will remove 1 from the domain of x1 and x3, but given x3 = 1,
it will only remove the value of 1 from x2’s domain.

Consider another problem P ≡ ({x1, x2, x3}, D, {x1 = x2, x2 = x3} where
variables x1, x2, x3 are again interchangeable. Every permutation of these vari-
ables gives a valuation symmetry. However, the propagation engine may not be
symmetric, as the symmetry σ that swaps x2 and x3 maps x1 = x2 to x1 = x3,
which is not directly implemented by a propagator. If the propagators for x1 = x2

and x2 = x3 are only checking, then the engine can detect that x1 = 1, x2 = 2
fails, but will not detect that x1 = 1, x3 = 2 fails.

Most of the symmetries in the problems studied in the literature are valuation
symmetries. Indeed, this property may be either guaranteed by the method used to
determine the symmetries of the problem (e.g. [10,22,2]), or automatically proved
(e.g. [24]). It is also typical for solvers to use the same strength of propagation for
constraints of the same type. Since symmetries often map constraints to constraints
of the same type, propagation engines are often symmetric.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Difference in power between complete methods

As proved by [31], the search tree explored by SBDS for a given problem P with
symmetry group S is a GE-tree. That is, a tree for which (a) no two nodes are
symmetric according to S, and (b) the tree contains a representative of every
solution of P (i.e., for every solution θ of P , either θ or a solution in its orbit under
S appears in the tree). Therefore, it may seem surprising that SBDS-1UIP can do
better, as shown by Example 6. This is because, in constructing the minimal GE-
tree, SBDS will visit nodes that are the root of completely failed subtrees, even
though it will never visit more than one symmetric version of each such node.
SBDS-1UIP is able to visit fewer nodes that are the root of completely failed
subtrees.

This is in fact due to the vastly different strengths of decision nogoods and 1UIP
nogoods. A decision nogood is derived via exhaustive search and tells us that the
subtree which we have just fully explored is failed. It does not allow us to prune any
other subtree in the search tree. Thus, the symmetric versions of decision nogoods
can only prune a subtree for which we have already explored a symmetric version.
A 1UIP nogood on the other hand, is derived through constraint resolution and
gives us a sufficient set of conditions for the failure to occur again anywhere else
in the search. This sufficient set of conditions may occur in many other subtrees
of the search tree, allowing the 1UIP nogood to prune these subtrees. Thus, the
symmetric versions of a 1UIP nogood can correctly prune a subtree even though we
may never have examined a symmetric version of it before. This occurs frequently
in problems with local structure, where SBDS-1UIP is able to exploit a symmetry
locally in the sub-component of a problem that is the actual cause of failure, even
when the symmetry may be broken outside of that sub-component.

Example 13 Consider the graph coloring problem given in Example 6. The 1UIP
nogood derived after the failure of search decisions x1 = 1, x2 = 2, x3 = 3, x4 =
4, x5 = 5, x6 = 1 is: x7 6= 4∧x7 6= 5∧x8 6= 4∧x8 6= 5∧x9 6= 4∧x9 6= 5 → x6 6= 1.
Thus, SBDS-1UIP identified the sub-component that caused the failure as the one
formed by the variables x6, x7, x8, x9, their current domains, and the constraints
linking them. The value symmetries that interchange every two values apply to
this nogood regardless of the fact that x1, . . . , x5 were labeled to values that broke
all these symmetries globally. And the symmetric versions of this 1UIP nogood can
prune the search node reached by decisions x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 =
5, x6 = 2, even though the two valuations do not actually lie in the same orbit!
Thus, the method is able to infer the failure of this search node despite the fact
that we have never examined any of its symmetric counterparts before. ⊓⊔

The situation is similar when using static symmetry breaking with the stan-
dard lex-leader constraints, since as soon as all values have been (correctly) used
in the past decisions (as it is the case in the above graph coloring example), the
symmetry breaking constraint is satisfied and causes no more pruning. The ad-
vantage for SBDS-1UIP comes from the LCG solver being able to give us very
precise information about which variables are involved in the conflict. This allows
SBDS-1UIP to be strictly stronger than complete methods like SBDS, SBDD or
lex-leader symmetry breaking constraints.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7 Breaking Almost Symmetries with SBDS-1UIP

While symmetries occur frequently in constraint problems, it is more common for
constraint problems arising from real world situations to contain almost symme-
tries, that is, symmetries that hold for all but a few constraints in the problem. As
mentioned before, such symmetries are not well behaved mathematically, which
makes it difficult to adapt traditional symmetry breaking techniques like lex-leader
constraints, SBDS or SBDD to exploit them. Previous work on almost symmetries
has concentrated on exploiting them by first transforming the original problem P

into a related problem P ′ where the symmetries are restored, and then applying
the traditional symmetry breaking techniques to P ′ [7,16,17,20]. In this section
we show that, with a slight modification, SBDS-1UIP can also be used to exploit
almost symmetries.

Definition 3 An almost symmetry σ of P ≡ (V,D, C) is a permutation on
pairs(P) for which ∃Hσ ⊆ C s.t. σ is a solution symmetry of P ′ ≡ (V,D,C \Hσ).
We call Hσ a breaking set of σ w.r.t. P .

Definition 4 An almost symmetry group of P ≡ (V,D,C) is a set S of almost
symmetries of P for which ∃HS ⊆ C, s.t. S is a symmetry group of P ′ ≡ (V,D,C \
HS). We call HS a breaking set of S w.r.t. P .

The intuition behind almost symmetries is that the set of constraintsHσ should
be a relatively small subset of C, such that if Hσ were removed from the problem,
σ would be a symmetry of the resulting problem. Each symmetry σ and symmetry
group S of P is a special case of almost symmetries where the sets of constraints
Hσ and HS are empty. Given an almost symmetry σ, if Hσ is small relative to C,
it is likely for an LCG solver to be able to exploit σ and prune significant parts of
the search space. This is because in an LCG solver, each nogood n is derived from
a certain subset of the constraints m(n) ⊆ C, i.e., m(n) ∧D |= n. In particular, n
is generated either by propagating constraint c, in which case m(n) = {c}, or by
resolving two nogoods n1 and n2 together, in which case m(n) = m(n1) ∪m(n2).
As the following theorem states, if m(n) is disjoint from Hσ, the symmetry can
be exploited.

Theorem 3 Given almost symmetry σ and nogood n of P ≡ (V,D,C), if m(n)
and Hσ are disjoint, then σ(n) is a valid nogood of P .

Proof Consider the problem P ′ ≡ (V,D,C \Hσ). By definition, σ is a symmetry
of P ′. Also, since C \ Hσ |= m(n) and m(n) |= n, we have that n is a nogood of
P ′ and by Corollary 1 we have that σ(n) is a correct nogood for P ′. Since P can
be obtained by simply adding constraints to P ′, σ(n) is also a correct nogood for
P . ⊓⊔

Theorem 3 tells us that in order to decide whether we can apply almost sym-
metry σ to nogood n to get another valid nogood, we simply need to know Hσ

and m(n).

Example 14 Consider the graph coloring problem introduced in Example 6. If two
vertices (that is, variables) in a given graph have the same set of neighbors, then
they are symmetric (a variable symmetry). While the set of neighbors is often not

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

•
x5

✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴

❅❅
❅❅

❅❅
❅

•
x3

•
x1

✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖ •
x6

✎✎
✎✎
✎✎
✎✎
✎✎
✎✎
✎

•
x4

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖ •
x2

♦♦♦♦♦♦♦♦♦♦♦♦♦♦

❅❅
❅❅

❅❅
❅ •

x7

•

⑦⑦⑦⑦⑦⑦⑦

x8

Fig. 7 A graph coloring problem where we can exploit almost symmetries.

the same, it is often similar. Consider variables x1 and x2 in the graph of Figure 7,
where the number of colors is 4. Since the two variables have almost the same set
of neighbors, we can exploit the almost symmetry σ which swaps x1 and x2 with
Hσ ≡ {x1 6= x3, x2 6= x4}.

Suppose we try x5 = 1, x1 = 2. Propagation forces x6, x7, x8 ∈ {3, 4} which
eventually fails and gives us the 1UIP nogood: x6 6= 1∧x7 6= 1∧x8 6= 1 → x1 6= 2.
The set of constraints used to derive this nogood is: m(n) ≡ {x1 6= x6, x1 6=
x7, x1 6= x8, x5 6= x6, x5 6= x7, x5 6= x8, x6 6= x7, x6 6= x8, x7 6= x8}. Clearly,
m(n) ∩ Hσ ≡ ∅ and, thus, Theorem 3 applies and the symmetric nogood x6 6=
1 ∧ x7 6= 1 ∧ x8 6= 1 → x2 6= 2 is also valid, allowing us to immediately prune 2
from the domain of x2. ⊓⊔

Given an almost symmetry group S, our implementation pre-computes Hσ

for every σ ∈ S and uses a bit-vector for each nogood n to keep track of its
m(n), where each bit in the bit-vector represents a constraint c that appears in
some Hσ for some almost symmetry σ ∈ S. The bit-vectors tend to be short,
since |Hσ| is typically small as, otherwise, the symmetry is too broken for almost
symmetry techniques to improve execution in any case. If n was generated by
propagating constraint c, m(n) is set to {c} by setting the appropriate bit in
the bit-vector to one. If n was generated by resolving two nogoods n1 and n2,
m(n) is set to m(n1) ∪ m(n2) by bitwise joining the bit-vectors of n1 and n2.
Finally, we also need to keep track of m(n) for nogoods n that are generated as
symmetric versions n = σ(n′) of a previously calculated nogood n′. We assume an
algorithm map(σ,m) that returns a set of constraints c′ such that if m |= n, then
c′ |= σ(n). For valuation symmetries we can define map(σ,m) = {σ(c) | c ∈ m(n)},
assuming that σ(c) is a constraint appearing in the problem. Note that we can
always define map(σ,m) = HS , which is safe but will hamper the effectiveness of
almost symmetries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 almost-sbds-1uip(B0 → h0, m, S,D)
2 D := D ∪ {h0}
3 New := {(B0 → h0,m)}
4 while (∃(B → h,m) ∈ New)
5 New := New \ {(B → h,m)}
6 for σ ∈ S

7 if Hσ ∩m 6= ∅ continue

8 h′ := σ(h)
9 B′ := {σ(l) | l ∈ B}
10 if (D |= B′ ∧ ¬(D |= h′))
11 D := D ∪ {h′}
12 New := New ∪ {(B′ → h′,map(σ,m)}

Fig. 8 The SBDS-1UIP algorithm for almost symmetries.

The revised SBDS-1UIP procedure almost-sbds-1uip is shown in Figure 8, where
we assume the original call has argument m = m(n) for initial nogood n ≡ B0 →
h0. Note that, as for full symmetries, in our implementation S is not the full
symmetry group and, instead, it only contains a small set of symmetries (the
pairwise swaps) that is recursively composed. The main two differences with the
algorithm of Figure 6 are (a) that every element in New is a tuple containing not
only a nogood but also its associated set of constraints m, and (b) that symmetric
versions of a nogood n are only considered for symmetries whose breaking set Hσ

is disjoint with m(n) (line 7).

8 Related Work

The theoretical foundations of how symmetric nogoods can be used to exploit
symmetries in propositional formulas was first given in [18]. Two approaches were
proposed there: SR-I which infers symmetric nogoods from global symmetries; and
SR-II which infers symmetric nogoods from local symmetries. These approaches
are analogous to those given by Theorem 1 and Theorem 3, but restricted to
Boolean variables and clausal constraints. No implementation or experimental
evaluation of the proposed system were given in this work. Dynamic symmetry
breaking techniques such as SBDS and SBDD can be considered implementations
of the extension of SR-I to the more general class of constraint problems involving
finite domain variables and arbitrary constraints. However, since they are only
capable of using decision nogoods, they lose much of the power afforded by SR-I
and they are incapable of using SR-II. In this paper, we produce a practical im-
plementation of the SR-I and SR-II approaches for general constraint problems
by combining LCG, which allows for the use of resolution to derive new nogoods,
with SBDS.

As mentioned before, while there have been several other theoretical works on
exploiting almost symmetries in constraint problems [16,17], we are only aware of
one previous implementation of a general method for exploiting almost symme-
tries [20]. The general idea to exploit the almost symmetry group S is to decompose
the problem P ≡ (V,D,C) into two parts: P1 which contains C \HS and is fully
symmetric, and P2 which contains HS . Traditional symmetry breaking methods
can be applied to P1 and any solutions can be extended to P2. In [20] the authors
propose a clever variant of this general idea where, rather than treating P1 and P2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

as separate problems, an additional channeling constraint merges them into one
fully symmetric problem P ′. Traditional symmetry breaking methods are then
applied to P ′, and each solution of P ′ converted to a solution of P .

Let VB = vars(C \ HS), VH = vars(HS), VBH = VB ∩ VH , and VH\B =
VH \ VB . P1 and P2 are obtained from P as follows: P1 ≡ (VB , DVB

, C \HS) and
P2 ≡ (V ′

BH ∪VH\B , DV ′
BH

∪VH\B
, H′

S), where V
′
BH contains a copy of each variable

in VBH , and H′
S is formed by replacing in every c ∈ HS any variable in VBH with

its shadow copy in V ′
BH . Note that S is now a full symmetry group on P1.

Example 15 Consider a simple graph coloring problem P ≡ (V,D,C) with do-
mains: x1, x2, x3 ∈ {1, 2, 3}, and constraints:C ≡ {x1 6= x2, x2 6= x3, x3 6= x1, x1 6=
1, x2 6= 2}. Consider the symmetry group S formed by any permutation of the val-
ues in {1,2,3}. We have HS ≡ {x1 6= 1, x2 6= 2}, VB = {x1, x2, x3}, VH = {x1, x2},
VBH = {x1, x2} and VH\B = ∅. We create shadow variables V ′

BH = {x′
1, x

′
2} yield-

ing P1 ≡ ({x1, x2, x3}, x1, x2, x3 ∈ {1, 2, 3}, {x1 6= x2, x2 6= x3, x3 6= x1}) where S

holds, and P2 ≡ ({x′
1, x

′
2}, x

′
1, x

′
2 ∈ {1, 2, 3}, {x′

1 6= 1, x′
2 6= 2}). ⊓⊔

P1 and P2 are then merged into one problem P ′ to which we add a symmetry
variable sv whose domain is S, and a channeling constraint Q such that θ ∈
solns(Q) iff: ∀σ ∈ S, ∀x ∈ V2, ∀x′ ∈ V ′

2 where x′ is the shadow version of x, we
have (θ(sv) = σ) → θ(x′) = σ(θ)(x). That is, the channeling constraint forces V ′

BH

to take on the values that VBH would take if we had applied σ to the valuation of
VB . The new problem P ′ is fully symmetric. Every solution θ of P corresponds to
an orbit of solutions in P ′ and, conversely, every solution θ′ of P ′ corresponds to
a solution θ of P .

Example 16 In the problem from Example 15, we add new variable sv and domain
constraint sv ∈ S and we post the constraint Q given by (sv = σ) → (x′

1 =
σ(1) ∧ x′

2 = σ(2)). Thus, for the solution x1 = 1, x2 = 2, x3 = 3 and sv equal
to the symmetry that swaps 1 and 3 leaving other values unchanged, denoted
(1 ↔ 3), Q forces x′

1 = 3, x′
2 = 2.

The solution of P given by x1 = 2, x2 = 1, x3 = 3 corresponds to the following
solutions of P ′: {x1 = 2, x2 = 1, x3 = 3, sv = id, x′

1 = 2, x′
2 = 1}, {x1 = 2, x2 =

3, x3 = 1, sv = (2 ↔ 3), x′
1 = 2, x′

2 = 1}, . . . , {x1 = 3, x2 = 1, x3 = 2, sv = (1 ↔
3), x′

1 = 2, x2 = 1}, where id is the identity and v1 ↔ v2 represents a symmetry
that swaps values v1 and v2, leaving the rest unchanged.

Conversely, suppose θ′ is a solution of P ′ for which θ′(sv) = σ, then θ defined
as ∀x ∈ VB , θ(x) = σ(θ′)(x) and ∀x ∈ V3, θ(x) = θ′(x), is a solution of P . In
our example, x1 = 1, x2 = 2, x3 = 3, sv = σ, x′

1 = 3, x′
2 = 1, where σ maps 1

to 3, 2 to 1, and 3 to 2, is a solution of P ′. The corresponding solution of P is
x1 = 3, x2 = 1, x3 = 2. ⊓⊔

In our experiments we will break symmetries in P ′ using SBDS-1UIP with
this remodeling method and compare these results to those obtained by breaking
almost symmetries directly with our method.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9 Experiments

9.1 Exploiting Symmetries

We now provide experimental evidence that SBDS-1UIP can be much stronger
than SBDS on some problems, and that symmetry breaking can work well with
lazy clause generation. To do this we extended Chuffed, which is a state of the
art LCG solver, with three different versions of SBDS. The first version (denoted
by dec in the tables) only uses symmetric versions of decision nogoods (in addi-
tion to the 1UIP itself, of course, as all versions implemented within Chuffed).
The second version (1UIP) only uses symmetric versions of 1UIP nogoods. And
the third version (crippled) only uses symmetric versions of 1UIP nogoods whose
associated symmetric decision nogood would have caused pruning, that is, posts
σ(n1uip) only if σ(ndec) can prune something. This is to show that the symme-
tries that only SBDS-1UIP can exploit can give additional speedup. We compare
against Chuffed with no symmetry breaking (none) and with standard lex-leader
symmetry breaking constraints (static). Finally, we compare against the Gecode
implementation of LDSB (LDSB), which gives the fastest execution with dynamic
symmetry breaking on the first two problems we examine, beating GAP-SBDS and
GAP-SBDD by significant margins. Note that all methods run are incomplete, in
the sense that they might only obtain a subset of all possible symmetric nogoods.
All versions of Chuffed are run on Xeon Pro 2.4GHz processors. The results for
LDSB were run on a Core i7 920 2.67 GHz processor.

The first two problems we examine are Concert Hall Scheduling and Graph
Coloring, introduced in Example 8 and Example 6, respectively. These problems
have a distributed constraint structure, that is, their failures are often only the
result of the interaction of a few local constraints. Hence, they tend to generate
small local 1UIP nogoods. The instances are randomly generated following [19]
to be highly symmetrical. The problems are directly defined in C++ for Chuffed

and Gecode for LDSB, and they do not require temporary variables (they are
available at http://www.cmears.id.au/symmetry/symcache.tar.gz). For
the Concert Hall problem all instances have 8 identical halls and N orders are
generated in partitions of uniformly distributed size, with all orders in a partition
being identical (i.e., having the same start time, end time and price). Thus, the
8 halls (values) are interchangeable and all orders within a partition (variables)
are also interchangeable. There are 20 randomly generated instances per N . For
the Graph Coloring problem, N nodes are partitioned so that each partition (of
maximum size 8) is either an independent set or a complete graph, and each
subgraph with nodes in two partitions is either an independent or a complete
bipartite graph. Instances are divided into classes according to how the partition
sizes are distributed (“uniform” or “biased”). Again, there are 20 instances of
each class. Colors (values) are interchangeable, as are nodes (variables) within
each partition. Our tables group the 20 instances by size N , so that the times and
number of fails displayed in the tables are the mean run times and fails for the
instances of each size. A timeout of 600 seconds per instance was used.

The results are shown in Tables 1 and 2. LDSB and dec fail to solve a few
instances. 1UIP, crippled and static all solve every instance in the benchmarks. In
fact, the set of instances for Graph Coloring, which is of an appropriate size for
normal CP solvers, is a bit too easy for lazy clause solvers such as Chuffed, which

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1 Comparison of three SBDS implementations in Chuffed, static symmetry breaking
in Chuffed, and LDSB in Gecode, on the Concert Hall Scheduling problem

Chuffed Gecode
N none 1UIP crippled dec static LDSB

Time Fails Time Fails Time Fails Time Fails Time Fails Time Fails
20 259.8 686018 0.04 84 0.05 130 0.07 350 0.05 134 0.01 496
22 381.5 749462 0.07 181 0.08 299 0.17 1207 0.07 183 0.07 3285
24 576.9 1438509 0.10 275 0.11 316 0.78 3426 0.15 486 0.04 913
26 483.4 1189930 0.10 282 0.19 677 2.26 5605 0.25 685 0.11 2895
28 530.7 1282797 0.68 1611 1.12 2613 3.64 10530 0.42 1041 0.83 21738
30 581.3 1251980 0.27 761 0.53 2042 19.52 48474 0.52 2300 20.19 530100
32 542.4 936019 0.40 1522 1.01 4845 21.48 65157 1.31 5712 1.27 49382
34 600.0 1039051 1.10 2636 3.22 8761 19.86 48837 1.60 4406 43.79 2128875
36 600.0 1223864 1.40 3156 5.02 13606 59.70 131142 2.37 5707 10.25 275917
38 600.0 1027778 1.91 5053 12.56 26556 82.77 178170 3.51 10518 37.37 564961
40 600.0 1447604 2.96 6648 10.27 27028 102.1 219454 6.40 18169 13.07 164685

is clear from the run times. Note that dec cannot compete with LDSB on Concert
Hall Scheduling because LDSB is more aggressive in generating symmetric nogoods
arising from compositions of generators.

Comparison between dec and 1UIP shows that posting symmetric 1UIP no-
goods is better than symmetric decision nogoods. Comparison between crippled

and 1UIP shows that the additional symmetries that we can only exploit with
SBDS-1UIP indeed gives us reduced search and additional speedup. Comparison
with static shows that dynamic symmetry breaking can be superior to static sym-
metry breaking on appropriate problems. The comparison with LDSB shows that
lazy clause solvers can be much faster than normal CP solvers, and that they
retain this advantage when integrated with symmetry breaking methods. It also
shows (by proxy) that SBDS-1UIP is superior to GAP-SBDS or GAP-SBDD on
these problems.

The total speed difference between 1UIP and dec is up to 2 orders of magnitude
for the Concert Hall problems and up to 4 orders of magnitude for the Graph Col-
oring problems. Most of this speedup can be explained by the dramatic reduction
in search space, which is apparent from the node counts in the results table. The
redundancies exploited by lazy clause solvers are different from those redundan-
cies caused by symmetries, and it is very clear here that by exploiting both at
the same time with SBDS-1UIP, we get much higher speedups than possible with
either of them separately. It should also be noted that Chuffed with static sym-
metry breaking (static) is reasonably fast (only about 2 times slower for Concert
Hall) even though it cannot exploit the extra redundancies that SBDS-1UIP can,
it has very low overhead (as shown by Graph Coloring) and integrates well with
lazy clause generation.

Graph Coloring and Concert Hall Scheduling are problems with a structure
that exposes the advantages of SBDS-1UIP. We also consider a more standard set
of problems with symmetries. The results, presented in Table 3, show that once
we have learning, static symmetry breaking is highly competitive. The advantage
of 1UIP over dec arises from taking advantage of locality in the constraint graph.
For problems where every variable is tightly constrained with every other variable
it has no advantage over dec and, hence, it is also usually surpassed by static

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 2 Comparison of three SBDS implementations in Chuffed, static symmetry breaking
in Chuffed, and LDSB in Gecode, on the Graph Coloring problems

Uniform
Chuffed Gecode

Size none 1UIP crippled dec static LDSB
Time Fails Time Fails Time Fails Time Fails Time Fails Time Fails

30 140.7 282974 0.00 14 0.06 474 0.26 3049 0.02 277 0.32 51331
32 211.4 390392 0.00 17 0.00 146 0.24 3677 0.00 84 0.16 14324
34 213.9 272772 0.00 25 0.29 1182 3.53 11975 0.03 433 4.26 629905
36 195.9 296358 0.00 36 0.04 467 6.91 23842 0.01 200 3.99 446275
38 224.0 297138 0.00 55 0.04 516 23.55 69480 0.03 526 7.42 912076
40 250.9 423326 0.00 83 0.31 1879 21.07 78918 0.06 878 21.24 2605242

Biased
Chuffed Gecode

Size none 1UIP crippled dec static LDSB
Time Fails Time Fails Time Fails Time Fails Time Fails Time Fails

20 13.25 39551 0.00 27 0.00 32 0.01 639 0.00 29 0.00 65
22 11.53 63984 0.00 25 0.00 34 0.02 727 0.00 25 0.00 301
24 66.60 154409 0.00 35 0.00 47 0.07 1992 0.00 32 0.02 2149
26 74.77 277290 0.00 55 0.00 93 0.12 3385 0.00 104 0.02 4117
28 130.5 280649 0.00 62 0.00 84 0.58 6402 0.00 103 0.62 137965
30 267.6 480195 0.00 101 0.01 239 10.48 43835 0.01 359 18.47 2562808
32 331.7 600772 0.01 232 0.24 1597 9.98 44216 0.16 1864 29.98 3746913
34 219.9 387213 0.20 806 0.40 1946 10.26 47470 0.45 1730 54.31 8365913
36 442.6 709888 0.01 317 0.04 857 27.39 113252 0.80 3226 43.93 5488843
38 382.5 631403 0.10 798 1.01 5569 31.63 138787 4.12 9413 76.00 7861140
40 465.6 531285 0.02 410 0.36 2660 24.68 91847 0.12 2133 52.05 7413304

symmetry breaking. Note that on these examples dec and 1UIP always find exactly
the same set of solutions, but sometimes static symmetry breaking finds less (since
dec and 1UIP are incomplete).

9.2 Exploiting Almost Symmetries

We have extended Chuffed to support almost symmetries as described in Sec-
tion 7. We compare four methods for handling almost symmetries, all of them
running under Chuffed: 1) ignore all almost symmetries, but exploit full sym-
metries if any exist using standard lex-leader symmetry breaking constraints (de-
noted by Lex-FullOnly in the tables); 2) use SBDS-1UIP to exploit both types
of symmetries (1UIP-All); and use the remodeling method as described in Sec-
tion 8 to exploit both types of symmetries using either 3) lex-leader symme-
try breaking (Remodel-Lex-ALL) or 4) SBDS-1UIP (Remodel-1UIP-All). We use
the following four problems (all models and instances are available at http:

//www.csse.unimelb.edu.au/˜pjs/almostsym/).

Black Hole Problem The Black Hole Problem [12] seeks a solution to the Black
Hole patience game. In this game the 52 playing cards (of a standard 52-card deck)
are laid out in 17 piles of 3, with the ace of spades starting in a “blackhole”. Each
turn, a card at the top of a pile can be played into the blackhole if it is ±1 from
the card that was played previously, with king wrapping back around to ace. The
aim is to play all 52 cards. This problem has variable almost symmetries since

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 3 Comparison of SBDS, SBDS-1UIP and static symmetry breaking implementations
in Chuffed on a variety of problems

1UIP dec static
Benchmark Time Fails Time Fails Time Fails
bibd [7, 7, 3, 3, 1] 0 13 0 13 0 17
bibd [12, 12, 6, 6, 4] 0.04 389 0.04 398 0.1 1777
bibd [13, 13, 6, 6, 4] 0.04 391 0.04 400 0.17 2528
bibd [8, 14, 4, 7, 3] 0.13 908 0.08 915 0.06 533

bibd [9, 12, 3, 4, 1] 0.01 39 0 39 0.01 72
bibd [11, 5, 2] 0.03 196 0.02 196 0.01 65

bibd [16, 6, 2] 22.11 111980 18.69 111993 3.71 29767

bibd [11, 6, 3] 0.08 1094 0.07 1094 0.01 92

bibd [9, 6, 5] 0.05 787 0.05 800 0 69

graceful [3, 3] 1.17 32583 1.12 32690 0.94 31562

graceful [4, 2] 0.39 10126 0.39 10558 0.27 8180

latin [4] 0 11 0 11 0 4

latin [5] 0 119 0 119 0 57

latin [6] 0.41 17098 0.37 17101 0.17 9426

magic square [3] 0 8 0 8 0 6

magic square [4] 2.12 38677 2.09 38391 1.95 37252

nn queens [7] 0.01 177 0.01 185 0.01 172

nn queens [8] 0.11 2071 0.11 2061 0.09 2054

queens [12] 1.97 30266 1.92 30236 1.82 30254
queens [13] 27.74 131564 26.97 131221 26.17 130819

steiner [7] 0 13 0 13 0 19
steiner [9] 0.03 597 0.02 669 0.01 160

each card of the same value is symmetric with others of the same value except for
the ordering constraints from the piles. We use 100 random instances.

Graph Coloring As discussed in Example 14, almost variable symmetries arise
in this problem when pairs of vertices have almost the same set of neighbors.
We construct instances as follows. We first randomly partition 50 vertices into 8
sets. For each pair of sets Si, Sj , we decide with 0.5 probability whether they are
densely connected or sparely connected. If dense, then for each pair of vertices
v1 ∈ Si, v2 ∈ Sj , we add an edge between them with probability 0.99. If sparse,
then for each pair of vertices v1 ∈ Si, v2 ∈ Sj , we add an edge between them with
probability 0.01. As a result, pairs of vertices in the same set v1, v2 ∈ Si typically
have very similar sets of neighbors, with the number of difference varying between
about 0 to 3. Roughly 40% of the variable pairs are symmetric (0 difference) while
the rest are almost symmetric (> 0 differences), resulting in a mixture of variable
symmetries and variable almost symmetries. There is also the standard symmetry
group in the problem created by value interchangeability.

Quasi-Group Completion The Quasi-Group Completion Problem [15] is an in-
stance of the Latin Squares Problem with side constraints of the form xi = v.
While QCP typically has no symmetries, the Latin Square Problem has many
row/column symmetries and value symmetries. We can model these underlying
symmetries in QCP as almost symmetries. We try 100 instances of n = 8 with
25% of the squares pre-filled and find all solutions of each instance.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 4 Comparison between ignoring almost symmetries and breaking full with lex(Lex-
FullOnly), breaking all with SBDS-1UIP (1UIP), or breaking all by remodeling using lex
(Remodel-Lex) or using SBDS-1UIP (Remodel-1UIP)

Problem Lex-FullOnly 1UIP Remodel-Lex Remodel-1UIP
Time Fails Time Fails Time Fails Time Fails

BlackHole 45.8 50427 21.8 24380 0.1 303 25.7 33481
GraphColor 35.2 73133 0.5 1488 51.4 179837 129.2 598644
QCP 252.5 4392785 17.7 279118 300 2497296 300 1137630
ConcertHall 257.1 600190 224.7 463213 11.9 24310 1.1 1866

Concert Hall Problem As shown before, the Concert Hall Problem of Example 8
has value interchangeability for the k identical concert halls. However, in more
realistic versions of this problem the halls may vary in size, equipment, location,
etc. As a result, it is possible that for each concert only a certain subset of the
halls are acceptable, corresponding to side constraints of form xi 6= v. This cre-
ates almost value symmetries and almost variable symmetries. We use randomly
generated instances following [19], with an additional 50 random side constraints
of the form xi 6= v.

The experiments were run on Xeon Pro 2.4GHz processors with a timeout of
300 seconds. Table 4 shows the average fails and times on each set of instances,
with timeouts counting as 300 seconds. It can be seen from Table 4 that all three
methods for almost symmetries can produce significant speedups on at least some
of the problems compared to the baseline of Lex-FullOnly. SBDS-1UIP is the fastest
on Graph Coloring and QCP, while Remodel-Lex is the fastest on Black Hole
and Remodel-1UIP is the fastest on Concert Hall. The different techniques are
effective on different problems. Their effectiveness appears to be very sensitive to
the structure of the problem and the types of constraints in them, so that one
method that performs well on one problem may perform very poorly on a different
problem.

SBDS-1UIP tends to be effective if the constraints in HS are not often directly
involved in the conflict. This happens, for example, whenever those constraints
are weak constraints (Graph Coloring), become satisfied by the partial assign-
ment, or have already propagated at a higher decision level (QCP). This is the
only method that could get any speedup on QCP. The remodeling method tends
to be effective if the constraints in HS are weak since, then, not too much infor-
mation is lost when the set of constraints is split into two. This is true for Black
Hole and Concert Hall, where we get very good speedups. On the other hand, if
HS contains strong constraints that prune many solutions of C \HS , then the re-
modeling severely weakens the model, potentially significantly increasing the run
time (Graph Coloring, QCP).

10 Conclusion

We have shown how LCG solvers can be extended to post symmetric versions of
their 1UIP nogoods. We proved that SBDS-1UIP is at least as strong as SBDS, and
showed that it can be strictly stronger on some problems. In particular, it is capable
of exploiting symmetries in the sub-component of a subproblem which actually

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

caused the failure. This kind of local symmetry is very difficult to exploit and we
are not aware of any other general symmetry breaking method that can exploit it.
To implement SBDS-1UIP, we had to solve a number of new issues, such as how to
map disequality literals, inequality literals, and literals from intermediate variables
under the symmetries. Our experimental evaluation showed that SBDS-1UIP can
be orders of magnitude faster than the original SBDS on appropriate problems.
We also defined almost symmetries and showed how they can be exploited using a
modified version of SBDS-1UIP. Our experimental evaluation showed that SBDS-
1UIP can give significant speedup on problems with almost symmetries, and can
be much faster than the previous almost symmetry breaking method.

Acknowledgments

NICTA is funded by the Australian Government through the Department of Com-
munications and the Australian Research Council through the ICT Centre of Ex-
cellence Program. This work was partially supported by Asian Office of Aerospace
Research and Development 12-4056.

References

1. R. Backofen and S. Will. Excluding symmetries in constraint-based search. In J. Jaffar,
editor, Proceedings of the 5th International Conference on Principles and Practice of
Constraint Programming, volume 1713 of Lecture Notes in Computer Science, pages 73–
87. Springer, 1999.

2. B. Benhamou. Study of symmetry in constraint satisfaction problems. In PPCP’94:
Second International Workshop on Principles and Practice of Constraint Programming,
pages 246–254, 1994.

3. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weight-
ing constraints. In Proceedings of the European Conference on Artificial Intelligence, pages
146–150, 2004.

4. G. Chu, M. Garcia de la Banda, C. Mears, and P. Stuckey. Symmetries and lazy clause
generation. In Proceedings of the 22nd International Joint Conference on Artificial Intel-
ligence, pages 516–521, 2011.

5. D. A. Cohen, P. Jeavons, C. Jefferson, K. E. Petrie, and B. M. Smith. Symmetry definitions
for constraint satisfaction problems. Constraints, 11(2-3):115–137, 2006.

6. J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-Breaking Predicates
for Search Problems. In Proceedings of the 5th International Conference on Principles of
Knowledge Representation and Reasoning, pages 148–159. Morgan Kaufmann, 1996.

7. A. Donaldson. Partial Symmetry in Model Checking. In SymNet Workshop on Almost-
Symmetry in Search, pages 17–21, 2005. http://www.allydonaldson.co.uk/edited_
volumes/SymNet2005.pdf.

8. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry Breaking. In T. Walsh, editor,
Proceedings of the 7th International Conference on Principles and Practice of Constraint
Programming, volume 2239 of Lecture Notes in Computer Science, pages 93–107. Springer,
2001.

9. T. Feydy and P. J. Stuckey. Lazy Clause Generation Reengineered. In I. P. Gent, editor,
Proceedings of the 15th International Conference on Principles and Practice of Con-
straint Programming, volume 5732 of Lecture Notes in Computer Science, pages 352–366.
Springer, 2009.

10. A. Frisch, I. Miguel, and T. Walsh. CGRASS: A system for transforming constraint
satisfaction problems. In Recent Advances in Constraints, Joint ERCIM/CologNet In-
ternational Workshop on Constraint Solving and Constraint Logic Programming, pages
15–30, 2003.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11. A. Gargani and P. Refalo. An Efficient Model and Strategy for the Steel Mill Slab Design
Problem. In C. Bessiere, editor, Proceedings of the 13th International Conference on
Principles and Practice of Constraint Programming, volume 4741 of Lecture Notes in
Computer Science, pages 77–89. Springer, 2007.

12. I. P. Gent, C. Jefferson, T. Kelsey, I. Lynce, I. Miguel, P. Nightingale, B. M. Smith, and
A. Tarim. Search in the patience game ’Black Hole’. AI Commun., 20(3):211–226, 2007.

13. I. P. Gent, T. Kelsey, S. Linton, I. McDonald, I. Miguel, and B. M. Smith. Conditional
Symmetry Breaking. In P. van Beek, editor, Proceedings of the 11th International Con-
ference on Principles and Practice of Constraint Programming, volume 3709 of Lecture
Notes in Computer Science, pages 256–270. Springer, 2005.

14. I. P. Gent and B. M. Smith. Symmetry Breaking in Constraint Programming. In W. Horn,
editor, Proceedings of the 14th European Conference on Artificial Intelligence, pages 599–
603. IOS Press, 2000.

15. C. Gomes and D. B. Shmoys. Completing Quasigroups or Latin Squares: A structured
Graph Colouring Problem. In D. S. Johnson, A. Mehrotra, and M. Trick, editors, Proceed-
ings of the Computational Symposium on Graph Colouring and Extensions, pages 22–39,
2002.

16. P. Gregory. Almost-Symmetry in Planning. In SymNet Workshop on Almost-Symmetry
in Search, pages 14–16, 2005. http://www.allydonaldson.co.uk/edited_volumes/
SymNet2005.pdf.

17. W. Harvey. Symmetric Relaxation Techniques for Constraint Programming. In Sym-
Net Workshop on Almost-Symmetry in Search, pages 50–59, 2005. http://www.

allydonaldson.co.uk/edited_volumes/SymNet2005.pdf.
18. B. Krishnamurthy. Short proofs for tricky formulas. Acta Inf., 22(3):253–275, 1985.
19. Y. C. Law, J. H. M. Lee, T. Walsh, and J. Y. K. Yip. Breaking symmetry of interchange-

able variables and values. In C. Bessiere, editor, Proceedings of the 13th International
Conference on Principles and Practice of Constraint Programming, volume 4741 of Lec-
ture Notes in Computer Science, pages 423–437. Springer, 2007.

20. R. Martin. The Challenge of Exploiting Weak Symmetries. In B. Hnich, M. Carlsson,
F. Fages, and F. Rossi, editors, Proceedings of the International Workshop on Constraint
Solving and Constraint Logic Programming, volume 3978 of Lecture Notes in Computer
Science, pages 149–163. Springer, 2005.

21. C. Mears. Automatic Symmetry Detection and Dynamic Symmetry Breaking for Con-
straint Programming. PhD thesis, Clayton School of Information Technology, Monash
University, 2009.

22. C. Mears, M. Garcia de la Banda, and M. Wallace. On implementing symmetry detection.
Constraints, 14(4):443–477, 2009.

23. C. Mears, M. Garcia de la Banda, M. Wallace, and B. Demoen. A novel approach for
detecting symmetries in CSP models. In L. Perron and M. Trick, editors, Proceedings of the
8th International Conference on Integration of Artificial Intelligence (AI) and Operations
Research (OR) techniques in Constraint Programming, volume 5015 of Lecture Notes in
Computer Science, pages 158–172. Springer, 2008.

24. C. Mears, T. Niven, M. Jackson, and M. Wallace. Proving symmetries by model transfor-
mation. In J. Lee, editor, Proceedings of the 17th International Conference on Principles
and Practice of Constraint Programming, volume 6876 of Lecture Notes in Computer
Science, pages 591–605. Springer, 2011.

25. P. Meseguer and C. Torras. Exploiting symmetries within constraint satisfaction search.
Artif. Intell., 129(1-2):133–163, 2001.

26. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference, pages
530–535. ACM, 2001.

27. N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack. Minizinc: Towards
a standard CP modelling language. In C. Bessiere, editor, Proceedings of the 13th Inter-
national Conference on Principles and Practice of Constraint Programming, volume 4741
of Lecture Notes in Computer Science, pages 529–543. Springer-Verlag, 2007.

28. O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation = Lazy Clause Generation. In
C. Bessiere, editor, Proceedings of the 13th International Conference on Principles and
Practice of Constraint Programming, volume 4741 of Lecture Notes in Computer Science,
pages 544–558. Springer, 2007.

29. J.-F. Puget. Symmetry breaking revisited. In P. Van Hentenryck, editor, Proceedings of
the 8th International Conference on Principles and Practice of Constraint Programming,
volume 2470 of Lecture Notes in Computer Science, pages 446–461. Springer, 2002.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30. J.-F. Puget. Symmetry breaking using stabilizers. In F. Rossi, editor, Proceedings of
the 9th International Conference on Principles and Practice of Constraint Programming,
volume 2470 of Lecture Notes in Computer Science, pages 585–589. Springer, 2003.

31. C. Roney-Dougal, I. Gent, T. Kelsey, and S. Linton. Tractable symmetry breaking using
restricted search trees. In Proceedings of the 16th European Conference on Artificial
Intelligence, pages 211–215. IOS Press, 2004.

32. A. Schutt, T. Feydy, P. J. Stuckey, and M. Wallace. Why cumulative decomposition is not
as bad as it sounds. In I. P. Gent, editor, Proceedings of the 15th International Conference
on Principles and Practice of Constraint Programming, volume 5732 of Lecture Notes in
Computer Science, pages 746–761. Springer, 2009.

33. A. Schutt, P. J. Stuckey, and A. R. Verden. Optimal carpet cutting. In J. Lee, editor,
Proceedings of the 17th International Conference on Principles and Practice of Constraint
Programming, volume 6876 of Lecture Notes in Computer Science, pages 69–84. Springer,
2011.

34. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient Conflict Driven
Learning in Boolean Satisfiability Solver. In Proceedings of the International Conference
on Computer-Aided Design, pages 279–285. ACM, 2001.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Chu, G;de la Banda, MG;Mears, C;Stuckey, PJ

Title:
Symmetries, almost symmetries, and lazy clause generation

Date:
2014-10

Citation:
Chu, G., de la Banda, M. G., Mears, C. & Stuckey, P. J. (2014). Symmetries, almost
symmetries, and lazy clause generation. CONSTRAINTS, 19 (4), pp.434-462. https://
doi.org/10.1007/s10601-014-9163-9.

Persistent Link:
http://hdl.handle.net/11343/282666

http://hdl.handle.net/11343/282666

