Skip to main content
Log in

On certifying the UNSAT result of dynamic symmetry-handling-based SAT solvers

  • Original Research
  • Published:
Constraints Aims and scope Submit manuscript

Abstract

SAT solvers are nowadays used in many applications where the UNSAT result has a special meaning that is at time critical. SAT instances sometimes exhibit symmetries which can be exploited to produce short proofs that would have been exponential for resolution alone. However, current unsatisfiability proof formats do not support symmetrical learning on which dynamic symmetry handling is based. We present in this paper a new proof format called DSRUP (Delete Symmetry Reverse Unit Propagation) which is an extension of DRUP (Delete Reverse Unit Propagation) and that is devised to certify UNSAT claims of SAT solvers implementing symmetrical learning. We first show that the problem of verifying symmetries of a CNF formula is Turing NP-hard. This led us to the definition of a new type of symmetry called RUP-symmetry, a class of symmetries more general than syntactic symmetries that can be efficiently checked. The DSRUP proof format is formally described and a verification algorithm is provided to validate DSRUP certificates. Finally, we provide experimental results obtained with the state-of-the-art dynamic symmetry-handling-based SAT solvers on unsatisfiable symmetric benchmarks drawn from SAT competitions, using an implementation of the DSRUP checking algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Given a group G with identity element e, a subgroup H, and a normal subgroup N, G is the semi-direct product of N and H if NH = {e} and G = NH

  2. http://fmv.jku.at/tracecheck/

  3. http://www.cs.utexas.edu/~marijn/drup/

  4. Note that a Turing reduction (a.k.a. Cook reduction) is used here, not a Karp reduction

  5. it is however not always the case

  6. https://www.starexec.org/

  7. http://www.satcompetition.org

  8. http://www.labri.fr/perso/lsimon/glucose/

  9. http://minisat.se/MiniSat.html

  10. http://www.cs.utexas.edu/~marijn/drup/

  11. http://bitbucket.org/krr/glucose-sel

  12. http://github.com/JoD/minisat-SPFS

References

  1. Cook, S.A. (1971). The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of computing, ACM (pp. 151–158).

  2. Zhang, H. (1997). SATO: An efficient prepositional prover. In Automated Deduction-CADE-14, Springer, 272–275.

  3. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S. (2001). Efficient conflict driven learning in a Boolean satisfiability solver. In Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, IEEE Press (pp. 279–285).

  4. Gomes, C.P., Selman, B., Kautz, H., et al. (1998). Boosting combinatorial search through randomization. AAAI/IAAI, 98, 431–437.

    Google Scholar 

  5. Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In International conference on theory and applications of satisfiability testing, Springer (pp. 502–518).

  6. Balyo, T., Biere, A., Iser, M., Sinz, C. (2016). Sat race 2015. Artificial Intelligence, 241, 45–65. http://www.sciencedirect.com/science/article/pii/S0004370216300984.

    Article  MathSciNet  Google Scholar 

  7. Audemard, G., & Simon, L. (2018). On the glucose sat solver. International Journal on Artificial Intelligence Tools, 27(01), 1840001.

    Article  Google Scholar 

  8. Heule, M.J.H., Järvisalo, M., Suda, M. (2019). Sat competition 2018. Journal on Satisfiability, Boolean Modeling and Computation, 11(1), 133–154.

    Article  MathSciNet  Google Scholar 

  9. Konan Tchinda, R., Tayou Djamegni, C. (2019). Enhancing reasoning with the extension rule in CDCL SAT solvers. In Conférence de Recherche en Informatique CRI’2019, Department of Computer Science, University of Yaoundé I, Cameroon. https://easychair.org/publications/preprint_download/NQQw.

  10. Crawford, J. (1992). A theoretical analysis of reasoning by symmetry in first-order logic. In AAAI Workshop on Tractable Reasoning (pp. 17–22).

  11. Crawford, J., Ginsberg, M., Luks, E., Roy, A. (1996). Symmetry-breaking predicates for search problems. KR, 96, 148–159.

    Google Scholar 

  12. Bogaerts, B., Devriendt, J., Bruynooghe, M. (2017). Symmetric explanation learning: Effective dynamic symmetry handling for SAT. In Theory and Applications of Satisfiability Testing-SAT 2017, proceedings, Springer, (Vol. 10491 pp. 83–100).

  13. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A. (2003). Solving difficult instances of Boolean satisfiability in the presence of symmetry. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(9), 1117–1137.

    Article  Google Scholar 

  14. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M. (2016). Improved static symmetry breaking for SAT. In International Conference on Theory and Applications of Satisfiability Testing, Springer (pp. 104–122).

  15. Heule, M., Keur, A., Van Maaren, H., Stevens, C., Voortman, M. (2005). Cnf symmetry breaking options in conflict driven SAT solving.

  16. Benhamou, B., Nabhani, T., Ostrowski, R., Saidi, M.R. (2010). Enhancing clause learning by symmetry in SAT solvers. In Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International Conference on, (Vol. 1, IEEE pp. 329–335).

  17. Devriendt, J., Bogaerts, B., de_ Cat, B., Denecker, M., Mears, C. (2012). Symmetry propagation: Improved dynamic symmetry breaking in SAT. In Tools with Artificial Intelligence (ICTAI), 2012 IEEE 24th International Conference on, IEEE, (Vol. 1 pp. 49–56).

  18. Clarke, E., Biere, A., Raimi, R., Zhu, Y. (2001). Bounded model checking using satisfiability solving. Formal methods in system design, 19(1), 7–34.

    Article  Google Scholar 

  19. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P. (2008). Efficient SAT-based bounded model checking for software verification. Theoretical Computer Science, 404(3), 256–274. International Symposium on Leveraging Applications of Formal Methods (ISoLA 2004).

    Article  MathSciNet  Google Scholar 

  20. Biere, A. (2008). Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation, 4, 75–97.

    Article  Google Scholar 

  21. Heule, M.JH., Hunt, W.A, Wetzler, N. (2014). Bridging the gap between easy generation and efficient verification of unsatisfiability proofs. Software Testing, Verification and Reliability, 24(8), 593–607.

    Article  Google Scholar 

  22. Wetzler, N., Heule, M.J.H., Hunt, W.A. (2014). Drat-trim: Efficient checking and trimming using expressive clausal proofs. In Sinz, C., & Egly, U. (Eds.) Theory and Applications of Satisfiability Testing – SAT 2014 (pp. 422–429). Cham: Springer International Publishing.

  23. Heule, M. J.H., Hunt, W.A., Wetzler, N. (2015). Expressing symmetry breaking in drat proofs. In Felty, A.P., & Middeldorp, A. (Eds.) Automated Deduction - CADE-25 (pp. 591–606). Cham: Springer International Publishing.

  24. Heule, M.J.H., Hunt, W.A., Wetzler, N. (2013). Trimming while checking clausal proofs. In Formal Methods in Computer-Aided Design (FMCAD), 2013, IEEE (pp. 181–188).

  25. Gelder, A.V. (2008). Verifying rup proofs of propositional unsatisfiability. In ISAIM.

  26. Tseitin, G.S. (1983). On the complexity of derivation in propositional calculus. In Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970, Siekmann, JH, Wrightson, G, Springer Berlin Heidelberg, Berlin, Heidelberg, 466–483. https://doi.org/10.1007/978-3-642-81955-1_28.

  27. Beame, P., Kautz, H., Sabharwal, A. (2004). Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research, 22, 319–351.

    Article  MathSciNet  Google Scholar 

  28. Biere, A., Heule, M., van Maaren, H. (2009). Handbook of satisfiability, IOS press, 185.

  29. Harrison, M.A. (1963). The number of transitivity sets of Boolean functions. Journal of the Society for Industrial and Applied Mathematics, 11(3), 806–828. https://doi.org/10.1137/0111059.

    Article  MathSciNet  Google Scholar 

  30. Krishnamurthy, B. (1985). Short proofs for tricky formulas. Acta informatica, 22(3), 253–275.

    Article  MathSciNet  Google Scholar 

  31. Urquhart, A. (1999). The symmetry rule in propositional logic. Discrete Applied Mathematics, 96-97, 177–193. http://www.sciencedirect.com/science/article/pii/S0166218X99000396.

    Article  MathSciNet  Google Scholar 

  32. Haken, A. (1985). The intractability of resolution. Theoretical Computer Science, 39, 297–308. Third Conference on Foundations of Software Technology and Theoretical Computer Science.

    Article  MathSciNet  Google Scholar 

  33. Konan Tchinda, R., & Tayou Djamegni, C. (2019). Enhancing static symmetry breaking with dynamic symmetry handling in CDCL SAT solvers. International Journal on Artificial Intelligence Tools, 28(03), 1950011. https://doi.org/10.1142/S0218213019500118.

    Article  Google Scholar 

  34. Audemard, G., & Simon, L. (2009). Predicting learnt clauses quality in modern SAT solvers. In International Joint Conferences on Artificial Intelligence, (Vol. 9 pp. 399–404).

  35. Walsh, T. (2011). On the complexity of breaking symmetry. In Proceedings of The 11th International Workshop on Symmetry in Constraint Satisfaction Problems (Sym-Con’11).

  36. Walsh, T. (2012). Symmetry breaking constraints: Recent results. In Twenty-Sixth AAAI Conference on Artificial Intelligence.

  37. Narodytska, N., & Walsh, T. (2013). Breaking symmetry with different orderings. In International Conference on Principles and Practice of Constraint Programming, Springer (pp. 545–561).

  38. Van Gelder, A. (2009). Improved conflict-clause minimization leads to improved propositional proof traces. In Kullmann, O (Ed.) Theory and Applications of Satisfiability Testing - SAT 2009 (pp. 141–146). Berlin, Heidelberg: Springer Berlin Heidelberg.

  39. Zhang, L., & Malik, S. (2003). Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In Proceedings of the Conference on Design, Automation and Test in Europe - Volume 1 , DATE ’03, IEEE Computer Society, Washington, DC, USA, 10880–. http://dl.acm.org/citation.cfm?id=789083.1022835.

  40. Gelder, A.V. (2002). Extracting (easily) checkable proofs from a satisfiability solver that employs both preorder and postorder resolution. In In Seventh Int’l Symposium on AI and Mathematics.

  41. Sinz, C., & Biere, A. (2006). Extended resolution proofs for conjoining bdds. In Grigoriev, D., Harrison, J., Hirsch, E.A. (Eds.) Computer Science – Theory and Applications (pp. 600–611). Berlin, Heidelberg: Springer Berlin Heidelberg.

  42. Goldberg, E., & Novikov, Y. (2003). Verification of proofs of unsatisfiability for cnf formulas. In Proceedings of the Conference on Design, Automation and Test in Europe - Volume 1, DATE ’03 (pp. 10886–). Washington, DC, USA: IEEE Computer Society. http://dl.acm.org/citation.cfm?id=789083.1022836.

  43. Manthey, N., Heule, M. J.H., Biere, A. (2013). Automated reencoding of Boolean formulas. In Biere, A., Nahir, A., Vos, T. (Eds.) Hardware and Software: Verification and Testing (pp. 102–117). Berlin, Heidelberg: Springer Berlin Heidelberg.

  44. Kullmann, O. (1999). On a generalization of extended resolution. Discrete Applied Mathematics, 96-97, 149–176. http://www.sciencedirect.com/science/article/pii/S0166218X99000372.

    Article  MathSciNet  Google Scholar 

  45. Heule, M. J.H., Hunt, W.A., Wetzler, N. (2013). Verifying refutations with extended resolution. In Bonacina, MP (Ed.) Automated Deduction – CADE-24 (pp. 345–359). Berlin, Heidelberg: Springer Berlin Heidelberg.

  46. Järvisalo, M., Heule, M. J.H., Biere, A. (2012). Inprocessing rules. In Gramlich, B., Miller, D., Sattler, U. (Eds.) Automated Reasoning (pp. 355–370). Berlin, Heidelberg: Springer Berlin Heidelberg.

  47. Brassard, G., & Bratley, P. (1996). Fundamentals of algorithmics, prentice-hall, inc., upper saddle river, nj, usa.

  48. McKay, B.D., et al. (1981). Practical graph isomorphism.

  49. Stump, A., Sutcliffe, G., & Tinelli, C. (2014). Starexec: a cross-community infrastructure for logic solving. In International Joint Conference on Automated Reasoning, Springer (pp. 367–373).

  50. Darga, P.T., Sakallah, K.A., & Markov, I.L. (2008). Faster symmetry discovery using sparsity of symmetries. In Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, IEEE (pp. 149–154).

Download references

Acknowledgments

The authors wish to thank the anonymous reviewers for their insightful comments and valuable suggestions that helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigue Konan Tchinda.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchinda, R.K., Djamegni, C.T. On certifying the UNSAT result of dynamic symmetry-handling-based SAT solvers. Constraints 25, 251–279 (2020). https://doi.org/10.1007/s10601-020-09313-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-020-09313-2

Keywords

Navigation