Skip to main content

Advertisement

Log in

Survey on the design of underwater sensor nodes

  • Published:
Design Automation for Embedded Systems Aims and scope Submit manuscript

Abstract

Underwater wireless sensor networks are networks composed of various underwater sensor nodes (USNs) that are able to communicate with each other. The vast majority of Earth’s surface is composed of water, which makes such networks a very interesting research topic and enables a variety of applications, i.e, from oil monitoring to real time water pollution control. The design of USNs is paramount to the network’s operation. In comparison to terrestrial wireless sensor nodes, USNs are more expensive, larger, and present greater energy consumption, due to the harsh conditions of the aquatic environment. This leads to different challenges that need to be addressed in the design of the node, including processing, communications, energy management, data sensing, and storage. This survey aids in the development of underwater sensor nodes, and underwater applications. We present a general architecture of USNs and discuss the basic functions that must be accomplished by each unit. We also present a comprehensive study of all elements that compose a sensor node, including microcontrollers, memories, sensors, and batteries. In doing so, we highlight which aspects should be of pivotal importance in the design of a USN and how they affect communication protocols and applications. We believe that this survey can facilitate and guide development of future UWSN applications and protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I2C (2000) The I2C-bus specification. Philips Semicond 9397:00954

    Google Scholar 

  2. HYD (2004) Instruction sheet chlorophyll a sensor. Hydrolab, Venice

    Google Scholar 

  3. GLO (2009) Water quality sensors manual. Global Water, Beijing

    Google Scholar 

  4. MC9 (2010) MC9S08LL64 series datasheet. Freescale, Austin

    Google Scholar 

  5. PIC (2011) PIC18(L)F1XK22 datasheet. Microchip, Chandler

    Google Scholar 

  6. STM (2011) STM8L151x8, STM8L152x8, STM8L151R6, STM8L152R6 datasheet. St Microelectronics, Geneva

    Google Scholar 

  7. WET (2011) WETStar datasheet. Wetlabs, Philomath

    Google Scholar 

  8. ADU (2012) ADuCM360, ADuCM361 datasheet. Analog Devices, Norwood

    Google Scholar 

  9. C4E (2012) C4E product datasheet. Partech, Washington D.C

    Google Scholar 

  10. C80 (2012) C8051F96x datasheet. Silicon Labs, Austin

    Google Scholar 

  11. CDE (2012) CDE-45P manual. Omega, La Chaux-de-Fonds

    Google Scholar 

  12. CON (2012) Conductivity probe datasheet. Vernier, Beaverton

    Google Scholar 

  13. EM6 (2012) EM6819Fx-A00x, EM6819Fx-A10x EM6819Fx-B00x, EM6819Fx-B10x datasheet. EM Microelectronic, Marin-Epagnier

    Google Scholar 

  14. MSP (2012) MSP430F22x2, MSP430F22x4 datasheet. Texas Instruments, Dallas

    Google Scholar 

  15. SAL (2012) Salinity sensor datasheet. Vernier, Beaverton

    Google Scholar 

  16. ML6 (2012) Salinity sensor ML66M user’s guide. Center for Microcomputer Applications, Amsterdam

    Google Scholar 

  17. SCF (2012) Seapoint chlorophyll fluorometer. Seapoint, Brentwood

    Google Scholar 

  18. ENE (2012) Zinc air prismatic handbook

  19. Ahmed N, Abbas Wb, Syed AA (2012) A low-cost and flexible underwater platform to promote experiments in uwsn research. In: Proceedings of the seventh ACM international conference on underwater networks and systems, ACM, New York, WUWNet ’12, pp 4:1–4:8. doi:10.1145/2398936.2398941

  20. Akyildiz IF, Pompili D, Melodia T (2007) State of the art in protocol research for underwater acoustic sensor networks. SIGMOBILE Mob Comput Commun Rev 11(4):11–22. doi:10.1145/1347364.1347371

    Article  Google Scholar 

  21. Albus Z, Valenzuela A, Buccini M (2009) Ultra-low power comparison: Msp430 vs. microchip xlp tech brief—a case for ultra-low power microcontroller performance. Saatavissa 16:2011

    Google Scholar 

  22. Analion (2012) http://www.analion.com.br/old_site/sensor.php?id=1

  23. Analite (2012) http://www.geoscientific.com/datasensors/specifications/analite9000.html

  24. Benthos T (2012) http://www.benthos.com/undersea-acoustic-release-modem-SMART-SM75.asp

  25. Companies CS (2012) http://www.campbellsci.com/109ss

  26. Company TS (2012a) http://www.thesextonco.com

  27. Company TWC (2012b) http://www.thewaterproofcasecompany.com/products.html

  28. Coutinho RW, Vieira LF, Loureiro AA (2013) Dcr: depth-controlled routing protocol for underwater sensor networks. IEEE ISCC

  29. Cui JH, Kong J, Gerla M, Zhou S (2006) The challenges of building mobile underwater wireless networks for aquatic applications. Netw IEEE 20(3):12–18. doi:10.1109/MNET.2006.1637927

    Article  Google Scholar 

  30. Dario IA, Akyildiz IF, Pompili D, Melodia T (2005) Underwater acoustic sensor networks: research challenges. Ad Hoc Netw 3:257–279

    Article  Google Scholar 

  31. Detweiler C, Doniec M, Vasilescu I, Basha E, Rus D (2012) Autonomous depth adjustment for underwater sensor networks: design and applications. IEEE/ASME Trans Mech 17:16–24

    Article  Google Scholar 

  32. Digitrol (2012) http://www.digitrol.com.br/produtos.php?cat=28&sub=83&prod=6

  33. DSPComm (2012) http://www.dspcomm.com/products_aquacase.html

  34. ECD (2012) http://www.ecdi.com/products/ph_series.html

  35. Emerson (2012) http://www2.emersonprocess.com/en-US/brands/rosemountanalytical/Liquid/Sensors/DO/Pages/index.aspx

  36. Energy H (2012) http://hardingenergy.com/

  37. Erol M, Vieira LFM, Gerla M (2007a) Auv-aided localization for underwater sensor networks. In: Proceedings of the international conference on wireless algorithms, systems and applications, pp 44–54

  38. Erol M, Vieira LFM, Gerla M (2007b) Localization with dive’n’rise (dnr) beacons for underwater acoustic sensor networks. In: Proceedings of the second workshop on Underwater networks, pp 97–100

  39. Erol-Kantarci M, Oktug S, Vieira L, Gerla M (2011) Performance evaluation of distributed localization techniques for mobile underwater acoustic sensor networks. Ad Hoc Netw 9:61–72

    Article  Google Scholar 

  40. Gray A, Arabshahi P, Roy S, Jensen N, Tracy L, Parrish N, Hsieh C (2009) Tradeoffs and design choices for a software defined acoustic modem: A case study: Extended abstract. In: Proceedings of the fourth ACM international workshop on underwater networks, ACM, New York, WUWNet ’09, pp 15:1–15:2. doi:10.1145/1654130.1654145

  41. Heidemann J, Ye W, Wills J, Syed A, Li Y (2006) Research challenges and applications for underwater sensor networking. In: IEEE wireless communications and networking conference, pp 228–235

  42. Jaffe JS, Glatts R, Schurgers C, Mirza D, Franks PJS, Roberts P, Simonet F (2007) Aue: An autonomous float for monitoring the upper water column. In: Oceans, pp 1–4

  43. Kinetics U (2012) http://www.underwaterkineticscanada.com

  44. Lee U, Wang P, Noh Y, Vieira LFM, Gerla M, Cui JH (2010) Pressure routing for underwater sensor networks. In: INFOCOM, pp 1676–1684

  45. Lu C, Wang S, Tan M (2008) Design and realization of sensor nodes for dense underwater wireless sensor networks. In: Proceedings of the 17th world congress the international federation of automatic control, pp 12,819–12,824

  46. Micron (2012) http://www.micron.com/products/nand-flash

  47. Mostec (2012) http://www.mostec.ch/products/m8836s10/index.html

  48. Pavan P, Bez R, Olivo P, Zanoni E (1997) Flash memory cells? An overview. In: Proceedings of the IEEE, vol 85, No. 8, CRC Press

  49. Piller S, Perrin M, Jossen A (2001) Methods for state-of-charge determination and their applications. J Power Sour 96:113–120

    Article  Google Scholar 

  50. Pinto D, Viana SS, Nacif JAM, Vieira LFM, Vieira MAM, Vieira AB, Fernandes AO (2012) Hydronode: a low cost, energy efficient, multi purpose node for underwater sensor networks. In: Proceedings of the IEEE local computer networks conference, pp 148–151

  51. Planet O (2012) http://www.opticsplanet.com/dry-cases.html

  52. Plett G (2004) Extended kalman filtering for battery management systems of lipb-based hev battery packspart 3. state and parameter estimation. J Power Sour 134:277–292

    Article  Google Scholar 

  53. Seahorse (2012) http://www.seahorsecases.com/

  54. Semiconductor R (2012) http://www.rohm.com/web/global/search/parametric/-/search/Serial%20EEPROM

  55. Sensorex (2012) http://www.sensorex.com/products/do_probes/lab/DO_lab_sensors.html

  56. Span G (2012) http://www.rshydro.co.uk/TS3000-Turbidity-Sensor-pr-16498.html

  57. Survey USG (2012) http://ga.water.usgs.gov

  58. Symmetricom (2012) http://www.symmetricom.com/company/news-and-events/press-room/index.cfm?releaseID=1667262

  59. Toledo M (2012) http://us.mt.com/us/en/home/products/ProcessAnalytics/Turbidity_2011/Turbidity-High/InPro8050.html

  60. Torres D, Friedman J, Schmid T, Srivastava MB (2009) Software-defined underwater acoustic networking platform. In: Proceedings of the fourth ACM international workshop on underwater networks, ACM, New York, WUWNet ’09, pp 7:1–7:8. doi:10.1145/1654130.1654137

  61. University of California SD (2012) http://www.argo.ucsd.edu

  62. Vasilescu I, Detweiler C, Rus D (2007) Aquanodes: an underwater sensor network. In: Proceedings of WUWNet ’07, pp 85–88

  63. Vieira LFM, Kong J, Lee U, Gerla M (2006) Analysis of aloha protocols for underwater acoustic sensor networks. Extended abstract from WUWNet 6

  64. Vieira LFM, Pinto D, Viana SS, Vieira MAM, Nacif JAM, Vieira AB (2012) Hydronode: an underwater sensor node prototype for monitoring hydroelectric reservoirs. In: WUWNet ’12

  65. Vieira MAM, Coelho CN, Silva DCD, Mata JMD (2003) Survey on wireless sensor network devices. In: IEEE conference on emerging technologies and factory automation proceedings 1:537–544

  66. Walden RH (1999) Analog-to-digital converter survey and analysis. IEEE J Sel Areas Commun 17:539–550

    Article  Google Scholar 

  67. Yang X, Ong KG, Dreschel WR, Zeng K, Mungle CS, Grimes CA (2002) Design of a wireless sensor network for long-term, in-situ monitoring of an aqueous environment. Sensors 2:455–472

    Article  Google Scholar 

  68. Yang Y, Xiaomin Z, Bo P, Yujing F (2009) Design of sensor nodes in underwater sensor networks. In: IEEE conference on industrial electronics and applications, pp 3978–3982

  69. YSI (2012a) http://www.ysi.com/accessoriesdetail.php?pH-Sensors-6-Series-114

  70. YSI (2012b) http://www.ysi.com/accessoriesdetail.php?6560-Conductivity-Temperature-Probe-95

  71. YSI (2012c) http://www.ysi.com/accessoriesdetail.php?6025-Chlorophyll-Sensor-6-Series-93

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz F. M. Vieira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed consent

We consent with the Ethical Standards.

Research involving human participants and/or animals

This research does not involve human or animals participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viana, S.S., Vieira, L.F.M., Vieira, M.A.M. et al. Survey on the design of underwater sensor nodes. Des Autom Embed Syst 20, 171–190 (2016). https://doi.org/10.1007/s10617-015-9169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10617-015-9169-6

Keywords

Navigation