Skip to main content
Log in

Visualizing multi-dimensional decision boundaries in 2D

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

In many applications experts need to make decisions based on the analysis of multi-dimensional data. Various classification models can support the decision making process. To obtain an intuitive understanding of the classification model, interactive visualizations are essential. We argue that this is best done by a series of interactive 2D scatterplots. In this paper, we define a set of characteristics of the multi-dimensional classification model that have to be visually represented in those scatterplots. Our proposed method presents those characteristics in a uniform manner for both linear and non-linear classification methods. We combine a visualization of a Voronoi based representation of multi-dimensional decision boundaries with visualization of the distances of the data elements to these boundaries. To allow the developer of the model to refine the threshold of the classification model and instantly observe the results, we use interactive decision point selection on a performance curve. Finally, we show how the combination of those techniques allows exploration of multi-dimensional decision boundaries in 2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. (‘http://www.raymondhill.net/voronoi/rhill-voronoi.php’)

  2. (‘http://prtools.org/’)

  3. (‘http://homepage.tudelft.nl/n9d04/ddtools.html’)

  4. (‘http://mlearn.ics.uci.edu/databases/liver-disorders/’)

  5. (‘http://mlearn.ics.uci.edu/databases/pima-indians-diabetes/’)

  6. (‘http://archive.ics.uci.edu/ml/datasets/Breast+Cancer’)

  7. (‘http://archive.ics.uci.edu/ml/datasets/Adult’)

References

  • Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv 23(3):345–405

    Article  Google Scholar 

  • Bendix F, Kosara R, Hauser H (2005) Parallel sets: visual analysis of categorical data. In: Proceedings of the 2005 IEEE Symposium on Information Visualization, pp 133–140

  • Bostock M, Heer J (2009) Protovis: a graphical toolkit for visualization. IEEE Trans Vis Comput Graph (Proc InfoVis) 15(6):1121–1128

    Article  Google Scholar 

  • Brown ET, Liu J, Brodley CE, Chang R (2012) Dis-function: learning distance functions interactively. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, (VAST), pp 83–92

  • Caragea D, Cook D, Honavar VG (2001) Gaining insights into support vector machine pattern classifiers using projection-based tour methods. In: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 251–256

  • Choo J, Lee H, Kihm J, Park H (2010) iVisClassifier: an interactive visual analytics system for classification based on supervised dimension reduction. In: Proceedings of the IEEE Symposium on Visual Analytics, Science and Technology, pp 27–34

  • Cleveland W, McGill ME (1988) Dynamic graphics for statistics. Statistics/Probability Series

  • Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley-Interscience, Berlin

    Google Scholar 

  • Elmqvist N, Dragicevic P, Fekete JD (2008) Rolling the dice: multidimensional visual exploration using scatterplot matrix navigation. IEEE Trans Vis Comput Graph (Proc InfoVis 2008) 14(6):1141–1148

    Google Scholar 

  • Endert A, Han C, Maiti D, House L, Leman S, North C (2011) Observation-level interaction with statistical models for visual analytics. In: Proceedings of the IEEE Conference on Visual Analytics, Science and Technology, pp 121–130

  • Fortune S (1987) A sweepline algorithm for Voronoi diagrams. Algorithmica 2(1–4):153–174

    Article  MATH  MathSciNet  Google Scholar 

  • Hamel L (2006) Visualization of support vector machines with unsupervised learning. In: Proceedings of 2006 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp 1–8

  • Heimerl F, Koch S, Bosch H, Ertl T (2012) Visual classifier training for text document retrieval. IEEE Transactions on Visualization and Computer Graphics (TVCG), pp 2839–2848

  • Hoferlin B, Netzel R, Hoferlin M, Weiskopf D, Heidemann G (2012) Inter-active learning of ad-hoc classifiers for video visual analytics. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), pp 23–32

  • Jeong DH, Ziemkiewicz C, Fisher B, Ribarsky W, Chang R (2009) iPCA: an interactive system for PCA-based visual analytics. Comput Graph Forum 28(3):767–774

    Article  Google Scholar 

  • Keim DA (2002) Information visualization and visual data mining. IEEE Trans Vis Comput Graph 8(1):1–8

    Article  MathSciNet  Google Scholar 

  • Keim DA, Mansmann F, Schneidewind J, Thomas J, Ziegler H (2008) Visual analytics: scope and challenges. Springer, Berlin

    Google Scholar 

  • Malik A, Maciejewski R, Elmqvist N, Jang Y, Ebert D, Huang W (2012) A correlative analysis process in a visual analytics environment. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology (VAST), pp 33–42

  • McClish DK (1989) Analyzing a portion of the ROC curve. Med Decis Mak 9(3):190–195

    Article  Google Scholar 

  • Migut M, Worring M (2012) Visual exploration of classification models for various data types in risk assessment. Inf Vis J (IVS) 11(3):237–251

    Article  Google Scholar 

  • Migut M, van Gemert J, Worring M (2011) Interactive decision making using dissimilarity to visually represented prototypes. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology (IEEE VAST), pp 141–149

  • Pekalska E, Duin RPW, Paclík P (2006) Prototype selection for dissimilarity-based classifiers. Pattern Recognit 39(2):189–208

    Article  MATH  Google Scholar 

  • Poulet F (2008) Towards effective visual mining with cooperative approaches. Springer, Berlin

    Google Scholar 

  • Provost F, Fawcett T (1997) Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, AAAI Press, pp 43–48

  • Stolte C, Tang D, Hanrahan P (2002) Polaris: a system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans Vis Comput Graph 8(1):52–65

    Article  Google Scholar 

  • Swayne DF, Lang DT, Buja A, Cook D (2003) GGobi: evolving from xgobi into an extensible framework for interactive data visualization. Comput Stat Data Anal 43(4):423–444

    Article  MATH  MathSciNet  Google Scholar 

  • Thomas J, Cook K (2005) Illuminating the path: the research and development agenda for visual analytics. IEEE CS Press, Silver Spring

    Google Scholar 

  • Ward MO (1994) Xmdvtool: Integrating multiple methods for visualizing multivariate data. In: Proceedings of the Conference on Visualization ’94, pp 326–333

  • Yan Z, Xu C (2008) Using decision boundary to analyze classifiers. 3rd International Conference on Intelligent System and Knowledge, Engineering 1:302–307

  • Yi J, Kang J, Stasko J, Jacko J (2007) Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans Vis Comput Graph 13(6):1224–1231

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Expertise center for Forensic Psychiatry, The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Migut.

Additional information

Responsible editor: Eamonn Keogh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migut, M.A., Worring, M. & Veenman, C.J. Visualizing multi-dimensional decision boundaries in 2D. Data Min Knowl Disc 29, 273–295 (2015). https://doi.org/10.1007/s10618-013-0342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-013-0342-x

Keywords