Skip to main content
Log in

RFID enabled traceability networks: a survey

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

The emergence of radio frequency identification (RFID) technology brings significant social and economic benefits. As a non line of sight technology, RFID provides an effective way to record movements of objects within a networked RFID system formed by a set of distributed and collaborating parties. A trail of such recorded movements is the foundation for enabling traceability applications. While traceability is a critical aspect of majority of RFID applications, realizing traceability for these applications brings many fundamental research and development issues. In this paper, we assess the requirements for developing traceability applications that use networked RFID technology at their core. We propose a set of criteria for analyzing and comparing the current existing techniques including system architectures and data models. We also outline some research opportunities in the design and development of traceability applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.: Trio: a system for data, uncertainty, and lineage. In: Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB’06), Seoul, Korea (2006)

    Google Scholar 

  2. Agrawal, R., Cheung, A., Kailing, K., Schonauer, S.: Towards traceability across sovereign, distributed RFID databases. In: Proceedings of the 10th International Database Engineering and Applications Symposium (IDEAS’06), Delhi, India (2006)

    Google Scholar 

  3. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Hippocratic databases. In: Proceedings of the 28th International Conference on Very Large Data Bases (VLDB’02) (2002)

    Google Scholar 

  4. Ahmed, N., Ramachandran, U.: RFID middleware systems: a comparative analysis. In: Unique Radio Innovation for the 21st Century: Building Scalable and Global RFID Networks. Springer, Berlin (2010)

    Google Scholar 

  5. Aigner, M., Feldhofer, M.: Secure symmetric authentication for RFID tags. In: Proceedings of the Telecommunication and Mobile Computing (TCMC’05), Graz, Austria (2005)

    Google Scholar 

  6. Alexander, K., Gilliam, T., Gramling, K., Grubelic, C.: Applying auto-ID to reduce losses associated with shrink. http://www.autoidlabs.org/uploads/media/IBM-AUTOID-BC-003.pdf

  7. Angeles, R.: RFID technologies: supply-chain applications and implementation issues. Inf. Syst. Manag. 22(1), 51–65 (2005)

    Article  MathSciNet  Google Scholar 

  8. Buckley, L.M., Olson, C.W.: High tech, high stakes: using technology to smash the fake trade. In: IPWorld, pp. 30–33 (2005)

    Google Scholar 

  9. Cantero, J.J., Guijarro, M.A., Plaza, A., Arrebola, G., Baños, J.: A design for secure discovery services in the EPCglobal architecture. In: Unique Radio Innovation for the 21st Century: Building Scalable and Global RFID Networks. Springer, Berlin (2010)

    Google Scholar 

  10. Cheng, R., Singh, S., Prabhakar, S.: U-DBMS: a database system for managing constantly-evolving data. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05) (2005)

    Google Scholar 

  11. Cheung, A., Kailing, K., Schönauer, S.: Theseos: a query engine for traceability across sovereign, distributed RFID databases. In: Proceedings of the 23rd International Conference on Data Engineering (ICDE’07), Istanbul, Turkey (2007)

    Google Scholar 

  12. Cocci, R.: SPIRE: scalable processing of RFID event stream. In: Proceedings of the 5th RFID Academic Convocation, Brussels, Belgium (2007)

    Google Scholar 

  13. Cocci, R., Tran, T., Diao, Y., Shenoy, P.: Efficient data interpretation and compression over RFID streams. In: Proceedings of the 24th International Conference on Data Engineering (ICDE’08), Cancun, Mexico (2008)

    Google Scholar 

  14. DeHoratius, N., Raman, A., Ton, Z.: Execution the missing link in retail operations. Calif. Manag. Rev. 43(3), 136–151 (2001)

    Google Scholar 

  15. DIALOG: Distributed Information Architectures for cOllaborative loGistics. http://dialog.hut.fi/

  16. Dimitriou, T.: A lightweight RFID protocol to protect against traceability and cloning attacks. In: Proceedings of the 1st International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05), Athens, Greece (2005)

    Google Scholar 

  17. EPCGLOBAL: EPCGLOBAL. http://www.EPCGLOBAL.com

  18. EPCglobal: EPCglobal Specifications. http://www.epcglobalinc.org/standards/specs/

  19. europa.eu: General Food Law—Traceability. http://ec.europa.eu/food/food/foodlaw/traceability/

  20. FDA: Combating counterfeit drugs, a report of the food and drug administration. http://www.fda.gov/oc/initiatives/counterfeit/report02_04.html

  21. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID systems using the AES algorithm. In: Proceedings of the 6th International Workshop on Cryptographic Hardware and Embedded Systems (CHES’04), Cambridge, USA (2004)

    Google Scholar 

  22. Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. Wiley, New York (2003)

    Google Scholar 

  23. Främling, K., Nyman, J.: From tracking with RFID to intelligent products. In: Proceedings of 14th IEEE International Conference on Emerging Technologies and Factory Automation, Palma de Mallorca, Spain (2009)

    Google Scholar 

  24. Globeranger: Globeranger. http://www.Globeranger.com

  25. Gonzalez, H., Han, J., Cheng, H., Li, X., Klabjan, D., Wu, T.: Modeling massive RFID data sets: a gateway-based movement graph approach. IEEE Trans. Knowl. Data Eng. 22, 90–104 (2010)

    Article  Google Scholar 

  26. Gonzalez, H., Han, J., Li, X., Klabjan, D.: Warehousing analyzing massive RFID data sets. In: Proceedings of the 22nd International Conference on Data Engineering (ICDE’06), Atlanta, USA (2006)

    Google Scholar 

  27. Gotel, O.C.Z., Finkelstein, A.C.W.: An analysis of the requirements traceability problem. In: Proceedings of the 1st International Conference on Requirements Engineering (ICRE’94), Colorado Springs, CO, USA (1994)

    Google Scholar 

  28. California Government: California business and professions code sections 4163. http://www.leginfo.ca.gov/calaw.html

  29. GS1: GS1 Traceability. http://www.gs1.org/productssolutions/traceability

  30. Gu, T., Wu, Z., Tao, X., Pung, H.K., Lu, J.: epSICAR: an emerging patterns based approach to sequential, interleaved and concurrent activity recognition. In: IEEE International Conference on Pervasive Computing and Communications, Los Alamitos, CA, USA (2009)

    Google Scholar 

  31. Huynh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models. In: Proceedings of the 10th International Conference on Ubiquitous Computing (Ubicomp ’08), Seoul, South Korea (2008)

    Google Scholar 

  32. Ilic, A., Andersen, T., Michahelles, F.: Increasing supply-chain visibility with rule-based RFID data analysis. IEEE Internet Comput. 13(1), 31–38 (2009)

    Article  Google Scholar 

  33. Jeffery, S.R., Garofalakis, M., Franklin, M.J.: Adaptive cleaning for RFID data streams. In: Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB’06), Seoul, Korea (2006)

    Google Scholar 

  34. Juels, A.: RFID security and privacy: a research survey. IEEE J. Sel. Areas Commun. 24(2), 381–394 (2006)

    Article  MathSciNet  Google Scholar 

  35. Juels, A., Pappu, R.: Squealing Euros: privacy protection in RFID-enabled banknotes. In: Financial Cryptography, pp. 103–121. Springer, Berlin (2002)

    Google Scholar 

  36. Kelepouris, T., Baynham, T., McFarlane, D.: Track and trace case studies report. http://www.autoidlabs.org/uploads/media/AUTOIDLABS-WP-BIZAPP-035.pdf, 2006

  37. Ketzenberg, M., Ferguson, M.: Managing slow moving perishables in the grocery industry. Prod. Oper. Manag. 17(5), 513–521 (2008)

    Article  Google Scholar 

  38. Landt, J.: The history of RFID. IEEE Potentials 24(4), 8–11 (2005)

    Article  Google Scholar 

  39. Lee, C.-H., Chung, C.-W.: Efficient storage scheme and query processing for supply chain management using RFID. In: Proceedings of the 28th ACM SIGMOD International Conference on Management of Data (SIGMOD’08), Vancouver, Canada (2008)

    Google Scholar 

  40. Lin, D., Elmongui, H.G., Bertino, E., Ooi, B.C.: Data management in RFID applications. In: Database and Expert Systems Applications. Lecture Notes in Computer Science, vol. 4653, pp. 434–444 (2007)

    Chapter  Google Scholar 

  41. Lopez, T.S., Ranasinghe, D.C., Patkai, B., McFarlane, D.: Taxonomy technology and applications of smart objects. Inf. Syst. Front. 13(2), 281–300 (2011)

    Article  Google Scholar 

  42. Osaka, K., Takagi, T., Yamazaki, K., Takahashi, O.: An efficient and secure RFID security method with ownership transfer. In: RFID Security, pp. 147–176. Springer, New York (2009)

    Google Scholar 

  43. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: state of the art and research challenges. IEEE Computer 40(11), 38–45 (2007)

    Google Scholar 

  44. Ranasinghe, D.C., Cole, P.H.: Networked RFID Systems and Lightweight Cryptography: Raising Barriers to Product Counterfeiting. Springer, Berlin (2008)

    Book  Google Scholar 

  45. Ranasinghe, D.C., Harrison, M., Främling, K., McFarlane, D.: Enabling through life product-instance management: solutions and challenges. J. Netw. Comput. Appl. 34(3) (2011)

  46. Ranasinghe, D.C., Sheng, Q.Z., Zeadally, S.: Unique Radio Innovation for the 21st Century: Building Scalable and Global RFID Networks. Springer, Berlin (2010)

    Book  Google Scholar 

  47. Rantzau, R., Kailing, K., Beier, S., Grandison, T.: Discovery services—enabling RFID traceability in EPCglobal networks. In: 13th International Conference on Management of Data (COMAD’06), Delhi, India (2006)

    Google Scholar 

  48. Rieback, M.R., Crispo, B., Tanenbaum, A.S.: The evolution of RFID security. IEEE Pervasive Comput. 5(1), 62–69 (2006)

    Article  Google Scholar 

  49. Robson, C., Watanabe, Y., Numao, M.: Parts traceability for manufacturers. In: Proceedings of the 23rd International Conference on Data Engineering (ICDE’07), Istanbul, Turkey (2007)

    Google Scholar 

  50. Rosen-Zvi, M., Chemudugunta, C., Griffiths, T., Smyth, P., Steyvers, M.: Learning author-topic models from text corpora. ACM Trans. Inf. Sys. 28, 4:1–4:38 (2010)

    Article  Google Scholar 

  51. Roussos, G.: Networked RFID: Systems, Software and Services. Springer, Berlin (2008)

    Google Scholar 

  52. Sheng, Q.Z., Li, X., Zeadally, S.: Enabling next-generation RFID applications: solutions and challenges. IEEE Computer 41(9), 21–28 (2008)

    Google Scholar 

  53. Sheng, Q.Z., Wu, Y., Ranasinghe, D.C.: Enabling scalable RFID traceability networks. In: Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Application, Perth, Australia (2010)

    Google Scholar 

  54. Stark, J.: Product Lifecycle Management: 21st Century Paradigm for Product Realisation. Springer, Berlin (2004)

    Google Scholar 

  55. Sutton, C., McCallum, A.: An introduction to conditional random fields for relational learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    Google Scholar 

  56. Wang, F., Liu, P.: Temporal management of RFID data. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05), Trondheim, Norway (2005)

    Google Scholar 

  57. Wang, F., Liu, S., Liu, P.: Complex RFID event processing. VLDB J. 18(4), 913–931 (2009)

    Article  Google Scholar 

  58. Wang, F., Liu, S., Liu, P.: A temporal RFID data model for querying physical objects. Pervasive Mob. Comput. 6(3), 382–397 (2010)

    Article  Google Scholar 

  59. Want, R.: An introduction to RFID technology. IEEE Pervasive Comput. 5(1), 25–33 (2006)

    Article  Google Scholar 

  60. Wei, B., Fedak, G., Cappello, F.: Scheduling independent tasks sharing large data distributed with BitTorrent. In: Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing (GRID’05), Seattle, USA (2005)

    Google Scholar 

  61. Zhao, W., Liu, X., Li, X., Liu, D., Zhang, S.: Research on hierarchical P2P based RFID code resolution network and its security. In: Proceedings of the Fourth International Conference on Frontier of Computer Science and Technology, Shanghai, China (2009)

    Google Scholar 

  62. Zhao, W., Liu, X., Zhang, S., Chen, B., Li, X.: Hierarchical P2P based RFID code resolution network: structure, tools and application. In: Proceedings of International Symposium on Computer Network and Multimedia Technology (CNMT’09), Wuhan, China (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbo Wu.

Additional information

Communicated by Elisa Bertino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Ranasinghe, D.C., Sheng, Q.Z. et al. RFID enabled traceability networks: a survey. Distrib Parallel Databases 29, 397–443 (2011). https://doi.org/10.1007/s10619-011-7084-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-011-7084-9

Keywords

Navigation