Abstract
Very large amounts of geospatial data are daily generated by many observation processes in different application domains. The amount of produced data is increasing due to the advances in the use of modern automatic sensing devices and also in the facilities available to promote crowdsourcing data collection initiatives. Spatial observation data includes both data of conventional entities and also samplings over multi-dimensional spaces. Existing observation data management solutions lack declarative specification of spatio-temporal analytics. On the other hand, current data management technologies miss observation data semantics and fail to integrate the management of entities and samplings in a single data modeling solution. The present paper presents the design of a framework that enables spatio-temporal declarative analysis over large warehouses of observation data. It integrates the management of entities and samplings within a simple data model based on the well known mathematical concept of function. Observation data semantics are incorporated into the model with appropriate metadata structures.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10619-014-7165-7/MediaObjects/10619_2014_7165_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10619-014-7165-7/MediaObjects/10619_2014_7165_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10619-014-7165-7/MediaObjects/10619_2014_7165_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10619-014-7165-7/MediaObjects/10619_2014_7165_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10619-014-7165-7/MediaObjects/10619_2014_7165_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10619-014-7165-7/MediaObjects/10619_2014_7165_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10619-014-7165-7/MediaObjects/10619_2014_7165_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10619-014-7165-7/MediaObjects/10619_2014_7165_Fig8_HTML.gif)
Similar content being viewed by others
References
Cox, S.: Geographic Information—Observations and Measurements. Open Geospatial Consortium (OGC) Abstract Specification Topic 20 and ISO 19156:2011(E) (2013). http://www.opengeospatial.org/standards/om. Accessed Jan 2014
Open Geospatial Consortium (OGC): OpenGIS Sensor Model Language (SensorML) Implementation Specification (2007). http://www.opengeospatial.org/standards/sensorml. Accessed Jan 2014
Bröring, A., Stasch, C., Echterhoff, J.: OGC Sensor Observation Service Interface Standard. Open Geospatial Consortium (OGC) (2012). http://www.opengeospatial.org/standards/sos. Accessed Jan 2014
Bowers, S., Madin, J., Schildhauer, M.: A conceptual modeling framework for expressing observational data semantics. In: Q. Li, S. Spaccapietra, E. Yu, A. Oliv (eds.) Conceptual Modeling - ER 2008, Lecture Notes in Computer Science, vol. 5231, pp. 41–54. Springer, Berlin (2008). doi:10.1007/978-3-540-87877-3_5
Compton, M., Barnaghi, P., Bermudez, L., Garca-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Phuoc, D.L., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor, K.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant. 17(0), 25–32 (2012). doi:10.1016/j.websem.2012.05.003
Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., Villa, F.: An ontology for describing and synthesizing ecological observation data. Ecol. Inf. 2(3), 279–296 (2007). Meta-information systems and ontologies. In: A Special Feature from the 5th International Conference on Ecological Informatics ISEI5, Santa Barbara, CA, Dec. 4–7, 2006—Novel Concepts of Ecological Data Management S.I. doi:10.1016/ j.ecoinf.2007.05.004
Neteler, M., Mitasova, H.: Open Source GIS: A GRASS GIS Approach, 3rd edn. Springer, New York (2008)
Galpin, I., Brenninkmeijer, C., Gray, A., Jabeen, F., Fernandes, A., Paton, N.: Snee: a query processor for wireless sensor networks. Distrib. Parallel Databases 29(1–2), 31–85 (2011). doi:10.1007/s10619-010-7074-3
Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005). doi:10.1145/1061318.1061322
Güting, R.H.: Spatial Databases. John Wiley, Hoboken (2001). doi:10.1002/047134608X.W4317
Lorentzos, N.A., Viqueira, J.R.R.: Relational formalism for the management of spatial data. Comput. J. 49(1), 62–81 (2006). doi:10.1093/comjnl/bxh136
International Organization for Standardization (ISO): Information technology—Database languages—SQL multimedia and application packages—Part 3: Spatial. ISO/IEC 13249–3:2011 (2011)
Obe, R., Hsu, L.: PostGIS in Action. Manning, Stamford, CT (2011)
Mongodb: http://www.mongodb.org/ (2014). Accessed Jan 2014
Idreos, S., Groffen, F.E., Nes, N.J., Manegold, S., Mullender, K.S., Kersten, M.L.: MonetDB: Two decades of research in column-oriented database architectures. IEEE Data Eng. Bull. 35(1), 40–45 (2012). http://oai.cwi.nl/oai/asset/19929/19929B.pdf. Accessed Jan 2014
Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., Widmann, N.: The multidimensional database system rasdaman. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of data, SIGMOD ’98, pp. 575–577. ACM, New York, NY (1998). doi:10.1145/276304.276386
Brown, P.G.: Overview of scidb: large scale array storage, processing and analysis. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, SIGMOD ’10, pp. 963–968. ACM, New York, NY (2010). doi:10.1145/1807167.1807271
Zhang, Y., Kersten, M.L., Manegold, S.: SciQL: array data processing inside an RDBMS. In: Proceedings of ACM SIGMOD International Conference on Management of Data 2013, pp. 1049–1052. ACM, New York, NY (2013). http://oai.cwi.nl/oai/asset/21401/21401A.pdf. Accessed Jan 2014
Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012). doi:10.1145/2187671.2187677
Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142 (2006). doi:10.1007/s00778-004-0147-z
Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J., Balakrishnan, H., Çetintemel, U., Cherniack, M., Tibbetts, R., Zdonik, S.: Towards a streaming sql standard. Proc. VLDB Endow. 1(2), 1379–1390 (2008). http://dl.acm.org/citation.cfm?id=1454159.1454179. Accessed Jan 2014
Apache cassandra: http://cassandra.apache.org/ (2014). Accessed Jan 2014
Voltdb: http://voltdb.com/ (2014). Accessed Jan 2014
Vertica: http://www.vertica.com/ (2014). Accessed Jan 2014
Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-store: a column-oriented dbms. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB ’05, pp. 553–564. VLDB Endowment (2005). http://dl.acm.org/citation.cfm?id=1083592.1083658. Accessed Jan 2014
Schut, P.: OpenGIS Web Processing Service. Open Geospatial Consortium (OGC) (2007). http://www.opengeospatial.org/standards/wps. Accessed Jan 2014
Cerveira Cordeiro, JaP, Câmara, G., Moura De Freitas, U., Almeida, F.: Yet another map algebra. Geoinformatica 13(2), 183–202 (2009). doi:10.1007/s10707-008-0045-4
Date, C.J., Darwen, H., Darwen, H.: Temporal Data and the Relational Model: A Detailed Investigation into the Application of Interval and Relation Theory to the Problem of Temporal. Kaufmann series in data management systems, 1st edn. Morgan Kaufmann Publishers, Inc., San Francisco, CA (2002)
Snodgrass, R.T. (ed.): The TSQL2 Temporal Query Language. Kluwer, Philip Drive Norwell, MA (1995)
Kulkarni, K., Michels, J.E.: Temporal features in SQL:2011. SIGMOD Rec. 41(3), 34–43 (2012). doi:10.1145/2380776.2380786
Vaisman, A., Zimányi, E.: A multidimensional model representing continuous fields in spatial data warehouses. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS’09, pp. 168–177. ACM, New York, NY (2009). doi:10.1145/1653771.1653797
Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25(1), 1–42 (2000). doi:10.1145/352958.352963
Viqueira, J., Lorentzos, N.: Sql extension for spatio-temporal data. VLDB J. 16(2), 179–200 (2007)
Baumann, P., Holsten, S.: A comparative analysis of array models for databases. In: Kim, Th, Adeli, H., Cuzzocrea, A., Arslan, T., Zhang, Y., Ma, J., Chung, Ki, Mariyam, S., Song, X. (eds.) Database Theory and Application, Bio-Science and Bio-Technology, Communications in Computer and Information Science, pp. 80–89. Springer, Berlin (2011). doi:10.1007/978-3-642-27157-1_9
Gray, P.M.D.: The Functional Approach to Data Management: : Modeling, Analyzing, and Integrating Heterogeneous Data. Springer, Berlin (2004)
Sagan, H.: Space-Filling Curves. Springer, Berlin (1994)
Abadi, D., Madden, S., Ferreira, M.: Integrating compression and execution in column-oriented database systems. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD ’06, pp. 671–682. ACM, New York, NY (2006). doi:10.1145/1142473.1142548
Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: Qpipe: A simultaneously pipelined relational query engine. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD ’05, pp. 383–394. ACM, New York, NY (2005). doi:10.1145/1066157.1066201
Abadi, D., Myers, D., DeWitt, D., Madden, S.: Materialization strategies in a column-oriented dbms. In: Proceedings of the IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 466–475 (2007). doi:10.1109/ICDE.2007.367892
Acknowledgments
This work has been partially supported by the Spanish Ministry of Science and Innovation (TIN2010-21246-C02-02). The authors are also grateful to the reviewers, whose comments contributed to greatly improve the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Villarroya, S., Viqueira, J.R.R., Regueiro, M.A. et al. SODA: A framework for spatial observation data analysis. Distrib Parallel Databases 34, 65–99 (2016). https://doi.org/10.1007/s10619-014-7165-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10619-014-7165-7