Abstract
In this paper, we focus on incrementally learning a robust multi-view subspace representation for visual object tracking. During the tracking process, due to the dynamic background variation and target appearance changing, it is challenging to learn an informative feature representation of tracking object, distinguished from the dynamic background. To this end, we propose a novel online multi-view subspace learning algorithm (OMEL) via group structure analysis, which consistently learns a low-dimensional representation shared across views with time changing. In particular, both group sparsity and group interval constraints are incorporated to preserve the group structure in the low-dimensional subspace, and our subspace learning model will be incrementally updated to prevent repetitive computation of previous data. We extensively evaluate our proposed OMEL on multiple benchmark video tracking sequences, by comparing with six related tracking algorithms. Experimental results show that OMEL is robust and effective to learn dynamic subspace representation for online object tracking problems. Moreover, several evaluation tests are additionally conducted to validate the efficacy of group structure assumption.

















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
All the sequences can be downloaded from the following three web URLs: (1) http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm, (2) http://vision.ucsd.edu/~bbabenko/project_miltrack.html, (3) http://cv.snu.ac.kr/research/~vtd/.
References
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 798–805. IEEE (2006)
Avidan, S.: Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1064–1072 (2004)
Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 261–271 (2007)
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional Siamese networks for object tracking. In: Proceedings of ECCV, pp. 850–865 (2016)
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: Proceedings of IEEE Conference on Computer Vision in Pattern Recognition, pp. 2544–2550 (2010)
Chaudhuri, K., Kakade, S., Livescu, K., Sridharan, K.: Multi-view clustering via canonical correlation analysis. In: Proceedings of International Conference on Machine Learning, pp. 129–136 (2009)
Chen, N., Zhu, J., Sun, F., Xing, E.P.: Large-margin predictive latent subspace learning for multi-view data analysis. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2365–2378 (2012)
Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1631–1643 (2005)
Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Eco: efficient convolution operators for tracking. In: Proceedings of IEEE Conference on Computer Vision in Pattern Recognition, pp. 21–26 (2017)
Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Proceedings of ECCV, pp. 472–488 (2016)
Dehghan, A., Assari, S.M., Shah, M.: GMMCP tracker: globally optimal generalized maximum multi clique problem for multiple object tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2784–2791 (2015)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC, pp. 47–56 (2006)
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Proceedings of ECCV, pp. 234–247. Springer, Heidelberg (2008)
Guo, Y.: Convex subspace representation learning from multi-view data. In: AAAI Conference on Artificial Intelligence, pp. 387–393 (2013)
Hare, S., Saffari, A., Torr, P.H.: Struck: structured output tracking with kernels. In: Proceedings of 13th IEEE International Conference on Computer Vision, pp. 263–270. IEEE (2011)
He, J., Du, C., Zhuang, F., Yin, X., He, Q., Long, G.: Online Bayesian max-margin subspace multi-view learning. In: IJCAI, pp. 1555–1561 (2016)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)
Hsieh, C.J., Dhillon, I.S.: Fast coordinate descent methods with variable selection for non-negative matrix factorization. In: Proceedings of 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1064–1072. ACM (2011)
Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1296–1311 (2003)
Jordan, A.: On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. In: Proceedings of Advances in Neural Information Processing Systems, pp. 841–848 (2002)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1269–1276. IEEE (2010)
Lee, D.Y., Sim, J.Y., Kim, C.S.: Multihypothesis trajectory analysis for robust visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5088–5096. IEEE (2015)
Liu, B., Huang, J., Kulikowski, C., Yang, L.: Robust visual tracking using local sparse appearance model and k-selection. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2968–2981 (2013)
Liwicki, S., Zafeiriou, S., Tzimiropoulos, G., Pantic, M.: Efficient online subspace learning with an indefinite kernel for visual tracking and recognition. IEEE Trans. Neural Netw. Learn. Syst. 23(10), 1624–1636 (2012)
Mei, X., Ling, H.: Robust visual tracking using L1 minimization. In: Proceedings of 12th IEEE International Conference on Computer Vision, pp. 1436–1443. IEEE (2009)
Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293–4302 (2016)
Nebehay, G., Pflugfelder, R.: Clustering of static-adaptive correspondences for deformable object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2784–2791. IEEE (2015)
Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1), 125–141 (2008)
Sharma, A., Kumar, A., Daume, H., Jacobs, D.W.: Generalized multiview analysis: a discriminative latent space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2160–2167. IEEE (2012)
Shi, Y., Li, W., Gao, Y., Cao, L., Shen, D.: Beyond IID: Learning to combine non-IID metrics for vision tasks. In: AAAI, pp. 1524–1531 (2017)
Wang, H., Nie, F., Huang, H.: Multi-view clustering and feature learning via structured sparsity. In: Proceedings of 30th International Conference on Machine Learning, pp. 352–360 (2013)
Wang, Y.X., Zhang, Y.J.: Nonnegative matrix factorization: a comprehensive review. IEEE Trans. Knowl. Data Eng. 25(6), 1336–1353 (2013)
White, M., Yu, Y., Zhang, X., Schuurmans, D.: Convex multi-view subspace learning. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1682–1690. Lake Tahoe, Nevada (2012)
Wu, G., Kim, M., Sanroma, G., Wang, Q., Munsell, B.C., Shen, D., Initiative, A.D.N., et al.: Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition. NeuroImage 106, 34–46 (2015)
Xiao, J., Stolkin, R., Leonardis, A.: Single target tracking using adaptive clustered decision trees and dynamic multi-level appearance models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4978–4987. IEEE (2015)
Xu, J., Ithapu, V.K., Mukherjee, L., Rehg, J.M., Singh, V.: Gosus: Grassmannian online subspace updates with structured-sparsity. In: Proceedings of 14th IEEE International Conference on Computer Vision, pp. 3376–3383. IEEE (2013)
Yang, W., Gao, Y., Shi, Y., Cao, L.: MRM-Lasso: a sparse multi-view feature selection method via low-rank analysis. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2801–2815 (2015)
Zhang, C., Hu, Q., Fu, H., Zhu, P., Cao, X.: Latent multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4279–4287 (2017)
Zhang, K., Zhang, L., Yang, M.H.: Real-time object tracking via online discriminative feature selection. IEEE Trans. Image Process. 22(12), 4664–4677 (2013)
Zhang, T., Bibi, A., Ghanem, B.: In defense of sparse tracking: Circulant sparse tracker. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3880–3888. IEEE (2016)
Zhang, T., Liu, S., Xu, C., Yan, S., Ghanem, B., Ahuja, N., Yang, M.H.: Structural sparse tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 150–158. IEEE (2015)
Zhang, T., Xu, C., Yang, M.H.: Multi-task correlation particle filter for robust object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4819–4827 (2017)
Acknowledgements
This work is supported from the National Natural Science Foundation of China (Nos. 61603193, 61532006, 61432008, 61320106006), the Natural Science Foundation of Jiangsu Province (No. BK20171479), and Jiangsu Postdoctoral Science Foundation (No. 1701157B).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, W., Shi, Y., Gao, Y. et al. Online multi-view subspace learning via group structure analysis for visual object tracking. Distrib Parallel Databases 36, 485–509 (2018). https://doi.org/10.1007/s10619-018-7227-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10619-018-7227-3