Skip to main content
Log in

Location prediction: a deep spatiotemporal learning from external sensors data

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

This paper proposes a deep multi-task learning framework to predict the next location from trajectories that are captured by external sensors (e.g., traffic surveillance cameras, or speed radars). The reported positions in such trajectories are sparse, due to the sparsity of the sensor distribution, and incomplete, because the sensors may fail to register the passage of objects. In this framework, we propose different preprocessing steps to align the trajectories representation and cope with a missing data problem. The multi-task learning approach is based on Recurrent Neural Networks. It utilizes both time and space information in the training phase to learn more meaningful representations, which boosts the learning performance of location prediction. The multi-task learning model, together with the preprocessing step, substantially improves the prediction performance. We conduct several experiments using a real dataset, and they demonstrate the validity of our multi-task learning model in terms of accuracy of 85.20%, which is more than 20% better than using a single-task learning model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alhasoun, F., Alhazzani, M., Aleissa, F., Alnasser, R., González, M.: City scale next place prediction from sparse data through similar strangers. In: Proceedings of ACM KDD Workshop, Halifax, Canada (2017)

  2. Bucher, D.: Vision paper: Using volunteered geographic information to improve mobility prediction. In: Proceedings of the 1st ACM SIGSPATIAL Workshop on Prediction of Human Mobility, PredictGIS’17, pp. 2:1–2:4. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3152341.3152344

  3. Chollet, F., et al.: Keras. https://keras.io (2015)

  4. Cruz, L.A., Zeitouni, K., de Macedo, J.A.F.: Trajectory prediction from a mass of sparse and missing external sensor data. In: 2019 20th IEEE International Conference on Mobile Data Management (MDM), pp. 310–319. IEEE (2019)

  5. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96, 226–231 (1996)

    Google Scholar 

  6. Feng, J., Li, Y., Zhang, C., Sun, F., Meng, F., Guo, A., Jin, D.: Deepmove: predicting human mobility with attentional recurrent networks. In: Proceedings of the 2018 World Wide Web Conference, WWW ’18, pp. 1459–1468. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2018). https://doi.org/10.1145/3178876.3186058

  7. Fournier-Viger, P., Lin, J.C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, H.T.: The spmf open-source data mining library version 2. In: Joint European conference on machine learning and knowledge discovery in databases, pp. 36–40. Springer (2016)

  8. Fu, K., Ji, T., Zhao, L., Lu, C.T.: Titan: a spatiotemporal feature learning framework for traffic incident duration prediction. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 329–338. ACM (2019)

  9. Hasan, S., Ukkusuri, S.V.: Reconstructing activity location sequences from incomplete check-in data: a semi-markov continuous-time bayesian network model. IEEE Trans. Intell. Transp. Syst. 19(3), 687–698 (2017)

    Article  Google Scholar 

  10. Hendawi, A.M., Bao, J., Mokbel, M.F.: iroad: a framework for scalable predictive query processing on road networks. Proc. VLDB Endow. 6(12), 1262–1265 (2013)

    Article  Google Scholar 

  11. Karatzoglou, A., Jablonski, A., Beigl, M.: A seq2seq learning approach for modeling semantic trajectories and predicting the next location. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL ’18, pp. 528–531. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3274895.3274983

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). arxiv:1412.6980

  13. Li, Y., Fu, K., Wang, Z., Shahabi, C., Ye, J., Liu, Y.: Multi-task representation learning for travel time estimation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1695–1704. ACM (2018)

  14. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model with spatial and temporal contexts. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 194–200. AAAI Press (2016). http://dl.acm.org/citation.cfm?id=3015812.3015841

  15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 3111–3119. Curran Associates Inc., New York (2013)

    Google Scholar 

  16. Naserian, E., Wang, X., Dahal, K., Wang, Z., Wang, Z.: Personalized location prediction for group travellers from spatial-temporal trajectories. Future Gener. Comput. Syst. 83, 278–292 (2018). https://doi.org/10.1016/j.future.2018.01.024

    Article  Google Scholar 

  17. Rocha, C.L., Brilhante, I.R., Lettich, F., De Macedo, J.A.F., Raffaetà, A., Andrade, R., Orlando, S.: Tpred: a spatio-temporal location predictor framework. In: Proceedings of the 20th International Database Engineering; Applications Symposium, IDEAS ’16, pp. 34–42. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2938503.2938544

  18. Trasarti, R., Guidotti, R., Monreale, A., Giannotti, F.: MyWay: location prediction via mobility profiling. Inf. Syst. 64, 350–367 (2017). https://doi.org/10.1016/j.is.2015.11.002

    Article  Google Scholar 

  19. Wu, F., Fu, K., Wang, Y., Xiao, Z., Fu, X.: A spatial-temporal-semantic neural network algorithm for location prediction on moving objects. Algorithms 10(2), 37 (2017). https://doi.org/10.3390/a10020037

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, H., Chen, Z., Sun, W., Zheng, B., Wang, W.: Modeling trajectories with recurrent neural networks. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17, pp. 3083–3090. AAAI Press (2017). http://dl.acm.org/citation.cfm?id=3172077.3172319

  21. Yao, D., Zhang, C., Huang, J., Bi, J.: Serm: a recurrent model for next location prediction in semantic trajectories. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2411–2414. ACM (2017)

  22. Zhang, C., Zhang, K., Yuan, Q., Zhang, L., Hanratty, T., Han, J.: GMove : group-level mobility modeling using geo-tagged social media. In: In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1305–1314 (2016). https://doi.org/10.1145/2939672.2939793

  23. Zhao, W.X., Zhou, N., Sun, A., Wen, J.R., Han, J., Chang, E.Y.: A time-aware trajectory embedding model for next-location recommendation. Knowl. Inf. Syst. (2017). https://doi.org/10.1007/s10115-017-1107-4

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior —Brasil (CAPES) under Finance Code 001, Fundação de Apoio a Serviços Técnicos, Ensino e Fomento a Pesquisas (FASTEF) (Grant Number 31/2019) and in part by Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP No 8789771/2017).

Disclaimer

This work reflects only the author’s view and that the EU Agency is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lívia Almada Cruz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, L.A., Zeitouni, K., da Silva, T.L.C. et al. Location prediction: a deep spatiotemporal learning from external sensors data. Distrib Parallel Databases 39, 259–280 (2021). https://doi.org/10.1007/s10619-020-07303-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-020-07303-0

Keywords

Navigation