Skip to main content

Advertisement

Log in

Immersive online biometric authentication algorithm for online guiding based on face recognition and cloud-based mobile edge computing

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

The Internet deconstructs and reshapes the traditional classroom organization, the status of teachers, the authority of teaching materials and the role of students. Online Ideological and political education with the help of the Internet has become an inevitable trend of Ideological and political education. Mobile edge computing solves the high delay barrier when traditional cloud computing center provides services. It is a new technology with wide application prospects, which provides convenience for online education. At the network edge, the mobile edge computing service network can be established due to the deployment of small base stations. Mobile users can upload and migrate some computing intensive or delay sensitive tasks to the currently connected small base station, and then the mobile edge computing network uses the hardware resources on the small base station to assist users in processing such tasks. Face verification technology can be widely used in access control, attendance, government convenience services and other occasions that need identity verification. Hence, this paper proposes the immersive online biometric authentication algorithm for online guiding based on face recognition and cloud-based mobile edge computing. We use the combined technologies to construct the efficient model. The proposed framework is validated compared with the other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Boulkenafet, Z., Komulainen, J., Hadid, A.: Face spoofing detection using colour texture analysis. IEEE Trans. Inf. Forensics Secur. 11(8), 1818–1830 (2017)

    Article  Google Scholar 

  2. Boulkenafet, Z., Komulainen, J., Feng, X., et al. Scale space texture analysis for face anti-spoofing. Biometrics (ICB). In: Proceedings of the 2016 international conference on IEEE, pp. 1–6 (2016)

  3. Parveen, S., Ahmad, S.M.S., Abbas, N.H., et al.: Face liveness detection using dynamic local ternary pattern (DLTP). Computers 5(2), 10 (2016)

    Article  Google Scholar 

  4. Garcia, D.C., de Queiroz, R.L.: Face-spoofing 2D-detection based on Moiré-pattern analysis. IEEE Trans. Inf. Forensics Secur 10(4), 778–786 (2015)

    Article  Google Scholar 

  5. Chan, P.P.K., Liu, W., Chen, D., et al.: Face liveness detection using a flash against 2D spoofing attack. IEEE Trans. Inf. Forensics Secur. 99, 1–1 (2017)

    Google Scholar 

  6. Abbas, N., Zhang, Y., Taherkordi, A., Skeie, T.: Mobile edge computing: a survey. IEEE Internet Things J. 5(1), 450–465 (2017)

    Article  Google Scholar 

  7. Kim, I., Ahn, J., Kim, D. Face spoofing detection with highlight removal effect and distortions. In: Proceedings of the IEEE international conference on systems, man, and cybernetics. IEEE, pp. 004299–004304 (2017)

  8. Tirunagari, S., Poh, N., Windridge, D., et al.: Detection of face spoofing using visual dynamics. IEEE Trans. Inf. Forenics Secur 10(4), 762–777 (2015)

    Article  Google Scholar 

  9. Pei, W., Shang, W., Liang, C., Jiang, X., Huang, C., Yong, Q.: Using lignin as the precursor to synthesize Fe3O4@ lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive. Ind. Crops Prod. 154, 112638 (2020)

    Article  Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Zhou, Z.-H., Feng, J. Deep forest: towards an alternative to deep neural networks. arXiv:1702.08835 (2017)

  12. Tran, T.X., Hajisami, A., Pandey, P., Pompili, D.: Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges. IEEE Commun. Mag. 55(4), 54–61 (2017)

    Article  Google Scholar 

  13. Ioffe, S., Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the international conference on international conference on machine learning. JMLR.org, pp. 448–456 (2015)

  14. Szegedy, C., Vanhoucke, V., Ioffe, S., et al. Rethinking the inception architecture for computer vision. In: Proceedings of the Computer Science, pp. 2818–2826 (2016)

  15. Szegedy, C., Ioffe, S., Vanhoucke, V., et al. Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence (2016)

  16. Schroff, F., Kalenichenko, D., Philbin, J. FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 815–823 (2015)

  17. Que, S., Awuah-Offei, K., Demirel, A., Wang, L., Demirel, N., Chen, Y.: Comparative study of factors affecting public acceptance of mining projects: evidence from USA, China and Turkey. J. Clean. Prod. 237, 117634 (2019)

    Article  Google Scholar 

  18. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offload-ing. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017)

    Article  Google Scholar 

  19. Habak, K., Ammar, M., Harras, K.A. et al. Femto clouds: leveraging mobile devices to provide cloud service at the edge. In: Proceedings of the IEEE 8th international conference on cloud computing (CLOUD), 2015, pp. 9–16 (2015)

  20. Yaqoob, I., Ahmed, E., Gani, A., et al.: Mobile ad hoc cloud: a survey. Wirel. Commun. Mobile Comput. 16(16), 2572–2589 (2016)

    Article  Google Scholar 

  21. Khalfi, B., Hamdaoui, B., Guizani, M.: Extracting and exploiting inherent sparsity for efficient IoT support in 5G: challenges and potential solutions. IEEE Wirel. Commun. 24(5), 68–73 (2017)

    Article  Google Scholar 

  22. Satyanarayanan, M., Schuster, R., Ebling, M., et al.: An open ecosystem for mobile-cloud convergence. IEEE Commun. Mag 53(3), 63–70 (2015)

    Article  Google Scholar 

  23. Huang, X., Yu, R., Kang, J., et al.: Exploring mobile edge computing for 5G-enabled softwar defined vehicular networks. IEEE Wirel. Commun. 24(6), 55–63 (2017)

    Article  Google Scholar 

  24. Zeng, D., Gu, L., Guo, S., et al.: Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. 65(12), 3702–3712 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gu, L., Zeng, D., Guo, S., et al.: Cost efficient resource management in fog computing supported medical cyber-physical system. IEEE Trans. Emerg. Top. Comput. 5(1), 113–123 (2017)

    Google Scholar 

  26. Chi, K., Zhu, Y.H., Li, Y., et al.: Coding schemes to minimize energy consumption of communication links in wireless nanosensor networks. IEEE Internet Things J. 3(4), 480–493 (2016)

    Article  Google Scholar 

  27. Kiani, A., Ansari, N.: Toward hierarchical mobile edge computing: an auction-based profit maximization approach. IEEE Internet Things J. 4(6), 2082–2091 (2017)

    Article  Google Scholar 

  28. Zhang, H., Xiao, Y., Bu, S., et al.: computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining stackelberg game and matching. IEEE Internet Things J. 4(5), 1204–1215 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Su.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, P. Immersive online biometric authentication algorithm for online guiding based on face recognition and cloud-based mobile edge computing. Distrib Parallel Databases 41, 133–154 (2023). https://doi.org/10.1007/s10619-021-07351-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-021-07351-0

Keywords

Navigation