Skip to main content
Log in

Searching semantically diverse paths

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

Location-Based Services are often used to find proximal Points of Interest (PoIs)—e.g., nearby restaurants and museums, police stations, hospitals, etc.—in a plethora of applications. An important recently addressed variant of the problem not only considers the distance/proximity aspect, but also desires semantically diverse locations in the answer-set. For instance, rather than picking several close-by attractions with similar features—e.g., restaurants with similar menus; museums with similar art exhibitions—a tourist may be more interested in a result set that could potentially provide more diverse types of experiences, for as long as they are within an acceptable distance from a given (current) location. Towards that goal, in this work we propose a novel approach to efficiently retrieve a path that will maximize the semantic diversity of the visited PoIs that are within distance limits along a given road network. Our approach allows to specify both a start and terminal location to return a (non-necessarily shortest) path that maximizes diversity rather than only minimizing travel cost, thus providing ample applications in tourist route recommendation systems. We introduce a novel indexing structure—the Diversity Aggregated R-tree, based on which we devise efficient algorithms to generate the answer-set—i.e., the recommended locations among a set of given PoIs—relying on a greedy searching strategy. Our experimental evaluations conducted on real datasets demonstrate the benefits of the proposed methodology over the baseline alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. SIGMOD Rec. 24, 71–79 (1995)

    Article  Google Scholar 

  2. Benetis, R., Jensen, C.S., Karĉiauskas, G., Ŝaltenis, S.: Nearest and reverse nearest neighbor queries for moving objects. VLDB J. 15(3), 229–249 (2006)

    Article  Google Scholar 

  3. Bao, J., Chow, C.-Y., Mokbel, M.F., Ku, W.-S.: Efficient evaluation of k-range nearest neighbor queries in road networks. In: 2010 Eleventh International Conference on Mobile Data Management, pp. 115–124 (2010)

  4. Zheng, K., Shang, S., Yuan, N.J., Yang, Y.: Towards efficient search for activity trajectories. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 230–241 (2013)

  5. Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman, A.: A model for enriching trajectories with semantic geographical information. In: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, pp. 1–8 (2007)

  6. Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., Theodoridis, Y., Yan, Z.: Semantic trajectories modeling and analysis. ACM Comput. Surv. 45(4), 1–32 (2013)

    Article  Google Scholar 

  7. Costa, C.F., Nascimento, M.A.: Towards spatially-and category-wise k-diverse nearest neighbors queries. In: Advances in Spatial and Temporal Databases, pp. 163–181 (2017)

  8. Teng, X., Yang, J., Kim, J.-S., Trajcevski, G., Züfle, A., Nascimento, M.A.: Fine-grained diversification of proximity constrained queries on road networks. In: Proceedings of the 16th International Symposium on Spatial and Temporal Databases, pp. 51–60 (2019)

  9. Costa, C.F., Nascimento, M.A., Schubert, M.: Diverse nearest neighbors queries using linear skylines. GeoInformatica 22(4), 815–844 (2018)

    Article  Google Scholar 

  10. Grambow, G., Oberhauser, R., Reichert, M.: Semantically-driven workflow generation using declarative modeling for processes in software engineering. In: 2011 IEEE 15th International Enterprise Distributed Object Computing Conference Workshops, pp. 164–173 (2011)

  11. Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. Formal Methods Softw Eng 5256, 355–374 (2008)

    Article  Google Scholar 

  12. Kelci, M., Pratt, R., Galati, M.: The traveling salesman traverses the genome: using sas® optimization in jmp® genomics to build genetic maps. In: In SAS Global Forum (2012)

  13. Teng, X., Trajcevski, G., Kim, J., Züfle, A.: Semantically diverse path search. In: 21st IEEE International Conference on Mobile Data Management (MDM), pp. 69–78 (2020)

  14. Issa, H., Damiani, M.L.: Efficient access to temporally overlaying spatial and textual trajectories. In: 17th IEEE International Conference on Mobile Data Management (MDM), pp. 262–271 (2016)

  15. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336 (1998)

  16. Jain, A., Sarda, P., Haritsa, J.R.: Providing diversity in k-nearest neighbor query results. In: Advances in Knowledge Discovery and Data Mining, pp. 404–413 (2004)

  17. Abbar, S., Amer-Yahia, S., Indyk, P., Mahabadi, S., Varadarajan, K.R.: Diverse near neighbor problem. In: Proceedings of the Twenty-Ninth Annual Symposium on Computational Geometry, pp. 207–214 (2013)

  18. Vieira, M.R., Razente, H.L., Barioni, M.C., Hadjieleftheriou, M., Srivastava, D., Traina, C., Tsotras, V.J.: On query result diversification. In: IEEE 27th International Conference on Data Engineering, pp. 1163–1174 (2011)

  19. Amagata, D., Hara, T.: Diversified set monitoring over distributed data streams. In: Proceedings of the 10th ACM International Conference on Distributed and Event-Based Systems, pp. 1–12 (2016)

  20. Lee, K.C.K., Lee, W.-C., Leong, H.V.: Nearest surrounder queries. In: 22nd International Conference on Data Engineering, p. 85 (2006)

  21. Kucuktunc, O., Ferhatosmanoglu, H.: \(\lambda\)-diverse nearest neighbors browsing for multidimensional data. IEEE Trans. Knowl. Data Eng. 25(3), 481–493 (2013)

    Article  Google Scholar 

  22. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings 17th International Conference on Data Engineering, pp. 421–430 (2001)

  23. Zhang, C., Zhang, Y., Zhang, W., Lin, X., Cheema, M.A., Wang, X.: Diversified spatial keyword search on road networks. In: Advances in Database Technology-EDBT 2014: 17th International Conference on Extending Database Technology, pp. 367–378 (2014)

  24. Zheng, B., Zheng, K., Scheuermann, P., Zhou, X., Nguyen, Q.V.H., Li, C.: Searching activity trajectory with keywords. World Wide Web 22(3), 967–1000 (2019)

    Article  Google Scholar 

  25. Rice, M.N., Tsotras, V.J.: Exact graph search algorithms for generalized traveling salesman path problems. In: International Symposium on Experimental Algorithms, pp. 344–355 (2012)

  26. Yang, Y., Li, Z., Wang, X., Hu, Q.: Finding the shortest path with vertex constraint over large graphs. Complexity 2019, 8728245–1872824513 (2019)

    MATH  Google Scholar 

  27. Teng, X., Trajcevski, G., Züfle, A.: Semantically diverse paths with range and origin constraints. In: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, pp. 375–378 (2021)

  28. Gao, R., Li, J., Li, X., Song, C., Zhou, Y.: A personalized point-of-interest recommendation model via fusion of geo-social information. Neurocomputing 273(C), 159–170 (2018)

    Article  Google Scholar 

  29. Han, P., Li, Z., Liu, Y., Zhao, P., Li, J., Wang, H., Shang, S.: Contextualized point-of-interest recommendation. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 2484–2490 (2020)

  30. Liu, Y., Pham, T.-A.N., Cong, G., Yuan, Q.: An experimental evaluation of point-of-interest recommendation in location-based social networks. Proc. VLDB Endow. 10(10), 1010–1021 (2017)

    Article  Google Scholar 

  31. Zhou, F., Yin, R., Zhang, K., Trajcevski, G., Zhong, T., Wu, J.: Adversarial point-of-interest recommendation. In: The World Wide Web Conference, pp. 3462–34618 (2019)

  32. Zhao, S., King, I., Lyu, M.R.: A survey of point-of-interest recommendation in location-based social networks. CoRR (2016) 1607.00647

  33. Zhou, F., Wu, H., Trajcevski, G., Khokhar, A., Zhang, K.: Semi-supervised trajectory understanding with poi attention for end-to-end trip recommendation. ACM Trans. Spatial Algorithms Syst. 6(2), 1–25 (2020)

    Article  Google Scholar 

  34. Schaake, K., Burgers, J., Mulder, C.H.: Ethnicity, education and income, and residential mobility between neighbourhoods. J. Ethn. Migr. Stud. 40(4), 512–527 (2014)

    Article  Google Scholar 

  35. Yao, J., Wong, D.W.S., Bailey, N., Minton, J.: Spatial segregation measures: a methodological review. Tijdschr. Econ. Soc. Geogr. 110(3), 235–250 (2019)

    Article  Google Scholar 

  36. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 853–864 (2005)

  37. Papadimitriou, C.H., Steiglitz, K.: Some complexity results for the traveling salesman problem. In: Proceedings of the Eighth Annual ACM Symposium on Theory of Computing, pp. 1–9 (1976)

  38. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley Longman Publishing Co., Inc, USA (1984)

    Google Scholar 

  39. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, pp. 47–57 (1984)

  40. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: Advances in Spatial and Temporal Databases, pp. 443–459 (2001)

  41. Noon, C.E., Bean, J.C.: An efficient transformation of the generalized traveling salesman problem. INFOR: Inform. Syst. Operat. Res. 31(1), 39–44 (1993)

    MATH  Google Scholar 

  42. Golden, B., Bodin, L., Doyle, T., Stewart, W., Jr.: Approximate traveling salesman algorithms. Oper. Res. 28(3–part–ii), 694–711 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hwang, S., Kwon, K., Cha, S.K., Lee, B.S.: Performance evaluation of main-memory r-tree variants. In: Advances in Spatial and Temporal Databases, pp. 10–27 (2003)

  44. Serdarushich, V.: Analytic Geometry. Nabla Ltd (2014)

    Google Scholar 

  45. Silverman, R.A.: Modern Calculus and Analytic Geometry. Dover (2012)

    MATH  Google Scholar 

  46. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik, 269–271 (1959)

  47. Tong, H., Faloutsos, C., Pan, J.-Y.: Fast random walk with restart and its applications. In: Sixth International Conference on Data Mining, pp. 613–622 (2006)

Download references

Acknowledgements

Dr. Züfle is supported by National Science Foundation AitF Grant CCF-1637541. Dr. Trajcevski is supported by National Science Foundation Grant SWIFT 203024.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Teng, Goce Trajcevski or Andreas Züfle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, X., Trajcevski, G. & Züfle, A. Searching semantically diverse paths. Distrib Parallel Databases 41, 603–638 (2023). https://doi.org/10.1007/s10619-022-07413-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-022-07413-x

Keywords

Navigation