Abstract
Constructions are given of different kinds of flats in the projective space \(PG(9,2)={\mathbb P}(\wedge^{2}V(5,2))\) which are external to the Grassmannian \({\cal G}_{\bf 1,4,2}\) of lines of PG(4,2). In particular it is shown that there exist precisely two GL(5,2)-orbits of external 4-flats, each with stabilizer group ≅31:5. (No 5-flat is external.) For each k=1,2,3, two distinct kinds of external k-flats are simply constructed out of certain partial spreads in PG(4,2) of size k+2. A third kind of external plane, with stabilizer ≅23:(7:3), is also shown to exist. With the aid of a certain ‘key counting lemma’, it is proved that the foregoing amounts to a complete classification of external flats.
Similar content being viewed by others
References
J.H. Conway R.T. Curtis S.P. Norton R.A. Parker R.A. Wilson (1985) Atlas of Finite Groups Clarendon Press Oxford
B.N. Cooperstein (1998) ArticleTitleExternal flats to varieties in PG(Λ2V) over finite fields Geom. Dedicata. 69 223–235
A. Cossidente A. Siciliano (2002) ArticleTitleOn tangent spaces and external flats to Grassmannians of lines over finite fields Linear Algebra Appl. 347 81–89
N.A. Gordon G. Lunardon R. Shaw (1998) ArticleTitleLinear sections of GL(4,2) Bull. Belg. Math. Soc. 5 287–311
Gordon N. A., Shaw R., Soicher LH. (2000). Classification of Partial Spreads in PG(4,2), (2000), (64 pp., accessible from: http://www.hull.ac.uk/maths/people/rs/staffdetails.html)
J.W.P. Hirschfeld (1985) Finite Projective Spaces of Three Dimensions Clarendon Press Oxford
JWP Hirschfeld R Shaw (1994) ArticleTitleProjective geometry codes over prime fields Contemporary Mathematics. 168 151–163
J.G. Maks J. Simonis (2000) ArticleTitleOptimal subcodes of second order Reed-Muller codes and maximal linear spaces of bivectors of maximal rank. Des Codes Cryptogr. 21 IssueID1–3 165–180
R. Shaw N.A. Gordon (1994) ArticleTitleThe lines of PG(4,2) are the points of a quintic in PG (9,2) J. Combin. Theory (A). 68 226–231
R. Shaw, J. G. Maks and N. A. Gordon, Flats in PG(9,2) external to the Grassmannian \({\cal G}_{\bf 1,4,2}\), (2001), (26 pp., accessible from: http://www.hull.ac.uk/maths/people/rs/staffdetails.html)
R. Shaw, J. G. Maks and N. A. Gordon, Flats in PG(9,2) external to the Grassmannian \({\cal G}_{\bf 1,4,2}\): Part II, (2002), (19 pp., accessible from: http://www.hull.ac.uk/maths/people/rs/staffdetails.html)
R. Shaw JG. Maks (2003) ArticleTitleConclaves of planes in PG(4,2) and certain planes external to the Grassmannian \({\cal G}_{\bf 1,4,2}\)PG(9,2) J. Geom. 78 168–180
R. Shaw (1992) ArticleTitleA characterization of the primals in PG(m,2) Des. Codes Cryptogr. 2 253–256
R. Shaw (1999) ArticleTitleA property of A7, and a maximal 3-dimensional linear section of GL(4,2) Discrete Math. 197 IssueID198 733–747
R. Shaw (1999) ArticleTitleConfigurations of planes in PG(5,2). Discrete Math. 5 IssueID208/209 529–546
R. Shaw (2000) ArticleTitleSubsets of PG(n,2) and maximal partial spreads in PG(4,2) Des. Codes Cryptogr. 21 209–222
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shaw, R., Maks, J.G. & Gordon, N.A. The Classification of Flats in \({\boldsymbol {PG}}({\bf 9,2})\) which are External to the Grassmannian \({\cal G}_{\bf 1,4,2}\). Des Codes Crypt 34, 203–227 (2005). https://doi.org/10.1007/s10623-004-4855-6
Issue Date:
DOI: https://doi.org/10.1007/s10623-004-4855-6