Skip to main content
Log in

Uncoverings-by-bases for base-transitive permutation groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

An uncovering-by-bases for a group G acting on a finite set Ω is a set \(\mathcal{U}\) of bases for G such that any r-subset of Ω is disjoint from at least one base in \(\mathcal{U}\), where r is a parameter dependent on G. They have applications in the decoding of permutation groups when used as error-correcting codes, and are closely related to covering designs. We give constructions for uncoverings-by-bases for many families of base-transitive group (i.e. groups which act transitively on their irredundant bases), including a general construction which works for any base-transitive group with base size 2, and some more specific constructions for other groups. In particular, those for the groups GL (3,q) and AGL (2,q) make use of the theory of finite fields. We also describe how the concept of uncovering-by-bases can be generalised to matroid theory, with only minor modifications, and give an example of this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey RF (2006)Permutation groups, error-correcting codes and uncoverings. Ph.D. Thesis, University of London, 2006.

  2. Bailey RF Error-correcting codes from permutation groups, submitted to Discrete Math. Preprint available from http://www.maths.qmul.ac.uk/~∼ rfb/papers/

  3. Bailey RF, Bray JN (In preparation) Decoding the Mathieu group M 12

  4. Cameron PJ (1993) Some multiply transitive permutation groups. In: Jungnickel D, Vanstone SA (eds) Coding theory, design theory, group theory: proceedings of the Marshall Hall conference. Wiley, New York

    Google Scholar 

  5. Cameron PJ (1999) Permutation groups, London Mathematical Society Student Texts, Vol 45. Cambridge University Press, Cambridge

    Google Scholar 

  6. Cameron PJ, Deza M (1979) On permutation geometries. J Lond Math Soc 20(2):373–386

    MATH  MathSciNet  Google Scholar 

  7. Cameron PJ, Fon-Der-Flaass DG (1995) Bases for permutation groups and matroids. Eur J Combinatorics 16:537–544

    Article  MATH  MathSciNet  Google Scholar 

  8. Carlitz L (1952) Primitive roots in a finite field. Transact Am Math Soc 73:373–382

    Article  MATH  Google Scholar 

  9. Carlitz L (1952) Some problems involving primitive roots in a finite field. Proc Nat Acad Sci USA 38:314–318, 618

    Google Scholar 

  10. Cohen SD (1990) Primitive elements and polynomials with arbitrary trace. Discrete Math 83:1–7

    Article  MATH  MathSciNet  Google Scholar 

  11. Cohen SD, Huczynska S (2003) The primitive normal basis theorem—without a computer. J Lond Math Soc 67(2):41–56

    Article  MATH  MathSciNet  Google Scholar 

  12. Conway JH, Curtis RT, Norton SP, Parker RA, Wilson RA 1985 (reprinted with corrections, 2003) \(\mathbb{ATLAS}\) of Finite Groups. Clarendon Press, Oxford

  13. Davenport H (1968,1969) Bases for finite fields. J Lond Math Soc 43:21–39; 44:378

    Google Scholar 

  14. Dixon JD, Mortimer B (1996) Permutation groups. Graduate Texts in Mathematics, Vol 163. Springer-Verlag, New York

    Google Scholar 

  15. The GAP Group (2004) GAP—Groups, algorithms, and programming, Version 4.4. (http://www.gap-system.org)

  16. Gordon DM La Jolla Covering Repository, http://www.ccrwest.org/cover.html

  17. Gordon DM, Kuperberg G, Patashnik O (1995) New constructions for covering designs. J Comb Des 3:269–284

    MATH  MathSciNet  Google Scholar 

  18. Gorenstein D, Hughes DR (1961) Triply transitive groups in which only the identity fixes four letters. Illinois J Math 5:486–491

    MATH  MathSciNet  Google Scholar 

  19. Jordan C (1873) Sur la limite de transitivité des groupes non-alternées. Bull Soc Math France 1:40–71

    Google Scholar 

  20. Lenstra Jr HW, Schoof RJ (1987) Primitive normal bases for finite fields. Math Comp 48:217–231

    Article  MATH  MathSciNet  Google Scholar 

  21. Lidl R, Niederreiter H (1997) Finite fields. Encyclopedia of Mathematics and its Applications (20), 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  22. Maund T (1989) Bases for permutation groups. D.Phil. Thesis, University of Oxford

  23. Mills WH (1979) Covering designs. I. Coverings by a small number of subsets. Ars Combin 8:199–315

    MATH  MathSciNet  Google Scholar 

  24. Mills WH, Mullin RC (1992) Coverings and packings. In: Dinitz JH, Stinson DR (eds) Contemporary design theory: a collection of surveys. Wiley, New York

    Google Scholar 

  25. Neumann PM, Stoy GA, Thompson EC (1994) Groups and geometry. Oxford University Press, Oxford

    MATH  Google Scholar 

  26. Oxley JG (1992) Matroid theory. Oxford University Press, Oxford

    MATH  Google Scholar 

  27. Zassenhaus H (1936) Kennzeichnung endlicher linearer als Permutationsgruppen. Abh Math Sem Hamburg 11:17–40

    Google Scholar 

  28. Zassenhaus H (1936) Über endliche Fastkörper. Abh Math Sem Hamburg 11:187–220

    Google Scholar 

  29. Zil’ber B (1988) Finite homogeneous geometries. Seminarber Humboldt-Univ Berlin Sekt Math 98:186–208

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Bailey.

Additional information

Communicated by J. D. Key.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, R.F. Uncoverings-by-bases for base-transitive permutation groups. Des Codes Crypt 41, 153–176 (2006). https://doi.org/10.1007/s10623-006-9005-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-006-9005-x

Keywords

AMS Classifications

Navigation