Skip to main content
Log in

A geometric approach to classifying Griesmer codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We develop a geometric framework for the determination of codes meeting the Griesmer bound that involves a classification of ((q + 1)x, x) generalized minihypers in PG(2, q). These are multisets: each point of the plane has a multiplicity, and the strength of a line is the sum of its point multiplicities. The minihyper requirement is that each line has strength at least x, with some line having strength exactly x. When \(1\leq x\leq q-1\) , the code corresponding to the minihyper meets the Griesmer bound. A crucial observation is that from any ((q + 1)x, x)-minihyper \({\mathcal{M}}\) we can obtain a ((q + 1)(x + 1), x + 1)-minihyper \({\mathcal{M}}^{\prime }\) by selecting a line and increasing its point multiplicities by 1. Minihyper \({\mathcal{M}}^{\prime }\) is a “child” of its “parent” \({\mathcal{M}}\) , and classification focuses on minihypers that are “orphans” with no parent. This inductive set-up expedites the search for Griesmer codes. There is a divisibility result parallel to one for codes meeting the Griesmer bound, but somewhat stronger. Divisibility simplifies the determination of orphans, and geometric objects such as ovals and blocking sets often occur in the descriptions. For q a prime, there are no nontrivial orphans, and we describe the non-trivial orphans for q = 4, 8 and 9 completely, along with their descendants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul-Elah MS, Al-Dhahir MW and Jungnickel D (1987). 83 in PG(2,q). Arch Math (Basel) 49(2): 141–150

    MATH  MathSciNet  Google Scholar 

  2. Ball S, Blokhuis A and Mazzocca F (1997). Maximal arcs in Desarguesian planes of odd order do not exist. Combinatorica 17(1): 31–41

    Article  MATH  MathSciNet  Google Scholar 

  3. Ball S, Hill R, Landjev I and Ward H (2001). On (q 2 + q + 2, q + 2)-arcs in the projective plane PG(2, q). Des Codes Cryptogr 24(2): 205–224

    Article  MATH  MathSciNet  Google Scholar 

  4. Brouwer AE http://www.win.tue.nl/~aeb/voorlincod.html

  5. Eupen M van and Lisonek P (1997). Classification of some optimal ternary linear codes of small length. Des Codes Cryptogr 10(1): 63–84

    Article  MATH  MathSciNet  Google Scholar 

  6. Farrell PG (1970). Linear binary anticodes. Electron Lett 6: 419–421

    Article  MATH  Google Scholar 

  7. Griesmer JH (1960). A bound for error-correcting codes. IBM J Res Dev 4: 532–542

    Article  MATH  MathSciNet  Google Scholar 

  8. Hall M (1986). Combinatorial theory, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  9. Hamada N and Deza M (1989). A survey of recent works with respect to a characterization of an (n, k, d; q)-code meeting the Griesmer bound using a min·hyper in a finite projective geometry. Discrete Math 77(1–3): 75–87

    Article  MATH  MathSciNet  Google Scholar 

  10. Hill R (1989). Optimal linear codes, Cryptography and coding II (Cirencester, 1989), IMA Conference Series New. Ser. Oxford University Press, New York, pp, 75–104

    Google Scholar 

  11. Hill R, Kolev E (1999) A survey of recent results on optimal linear codes. Combinatorial designs and their applications (Milton Keynes, 1997). Chapman & Hall/CRC Res. Notes Math, vol 403. Chapman & Hall/CRC, Boca Raton, FL, pp 127–152

  12. Hill R (1999). An extension theorem for linear codes. Des Codes Cryptogr 17(1–3): 151–157

    Article  MATH  MathSciNet  Google Scholar 

  13. Hirschfeld JWP (1998) Projective geometries over finite fields, 2nd edn. Oxford Mathematical Monographs, Oxford University Press, New York

    MATH  Google Scholar 

  14. Hirschfeld JWP and Storme L (1998). The packing problem in statistics, coding theory and finite projective spaces, R. C. Bose, memorial conference (Fort Collins, CO, 1995). J Stati Plann Inference 72(1–2): 355–380

    Article  MATH  MathSciNet  Google Scholar 

  15. Hirschfeld JWP, Storme L (2001) The packing problem in statistics, coding theory and finite projective spaces: update 2001. Finite geometries. Dev Math 3. Kluwer, Dordrecht, pp 201–246

  16. Hughes DR and Piper FC (1973). Projective planes. Springer, Berlin

    MATH  Google Scholar 

  17. Jones C, Matney A and Ward HN (2006). Optimal four-dimensional codes over GF(8). Electron J Combin 13: #R43

    MathSciNet  Google Scholar 

  18. Solomon G and Stiffler JJ (1965). Algebraically punctured cyclic codes. Inf Control 8: 170–179

    Article  MATH  MathSciNet  Google Scholar 

  19. Storme L (2006). Linear codes meeting the Griesmer bound, minihypers and geometric applications. Matematiche (Catania) 59(1–2): 367–392

    MathSciNet  Google Scholar 

  20. Ward HN (1998). Divisibility of codes meeting the Griesmer bound. J Comb Theory Ser A 83(1): 79–93

    Article  MATH  Google Scholar 

  21. Ward HN (2001). The nonexistence of a [207, 4, 165] code over GF(5). Des Codes Cryptogr 22(2): 139–148

    Article  MATH  MathSciNet  Google Scholar 

  22. Ward HN (2001). Divisible codes—a survey. Serdica Math J 27(4): 263–278

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Hill.

Additional information

Dedicated to Dan Hughes on his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, R., Ward, H. A geometric approach to classifying Griesmer codes. Des. Codes Cryptogr. 44, 169–196 (2007). https://doi.org/10.1007/s10623-007-9086-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9086-1

Keywords

AMS Classifications

Navigation