Skip to main content
Log in

Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A conflict-avoiding code (CAC) C of length n and weight k is a collection of k-subsets of \({\mathbb{Z}}_n\) such that \(\Delta(x) \cap \Delta(y) = \emptyset\) holds for any \(x,y\in C\) , \(x\not= y\) , where \(\Delta(x)=\{j-i\,|\, i,j\in x, i\not= j\}\) . A CAC with maximum code size for given n and k is called optimal. Furthermore, an optimal CAC C is said to be tight equi-difference if \(\bigcup_{x\in C}\Delta(x)={\mathbb{Z}}_n\setminus \{0\}\) holds and any codeword \(x\in C\) has the form \(\{0,i,2i,\ldots,(k-1)i\}\) . The concept of a CAC is motivated from applications in multiple-access communication systems. In this paper, we give a necessary and sufficient condition to construct tight equi-difference CACs of weight k = 3 and characterize the code length n’s admitting the condition through a number theoretical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berndt B.C., Evans R.J. (1979). Sums of Gauss, Jacobi, and Jacobsthal. J. Number Theory 11: 71–80

    Article  MathSciNet  Google Scholar 

  2. Buratti M. (1995). A powerful method for constructing difference families and optimal optical orthogonal codes. Des. Codes Cryptogr. 5(1): 13–25

    Article  MATH  MathSciNet  Google Scholar 

  3. Colbourn C.J., Dinitz J.H., Stinson D.R.: Surveys in combinatorics. In: Lamb, J.D., Preece, D.A., (eds.) pp. 37–100. Applications to communications, cryptography, and Networking. London Math. Soc. Lecture Note, ser. 267, Cambridge Univ. Press (1999).

  4. Chung F.R.K., Salehi J., Wei V.K. (1989). Optical orthogonal codes: Design, analysis, and applications. IEEE Trans. Inform. Theory 35(3): 595–604

    Article  MATH  MathSciNet  Google Scholar 

  5. Chung H., Kumar P.V. (1990). Optical orthogonal codes—New bounds and an optimal construction. IEEE Trans. Inform. Theory 36: 866–873

    Article  MATH  MathSciNet  Google Scholar 

  6. Evans R.J. (1980). The 2r-th power character of 2. J. Reine Angew. Math. 315: 174–189

    MATH  MathSciNet  Google Scholar 

  7. Evans R.J. (1981). Rational reciprocity laws. Acta Arith. 39: 281–294

    MATH  MathSciNet  Google Scholar 

  8. Györfi L., Vajda I. (1993). Constructions of protocol sequences for multiple access collision channel without feedback. IEEE Trans. Inform. Theory 39(5): 1762–1765

    Article  MATH  Google Scholar 

  9. Hasse H. (1975). Mathmatische Abhandlungen Band 1. Walter de Gruyter, Berlin, pp. 355–413.

    Google Scholar 

  10. Jimbo M., Mishima M., Janiszewski S., Teymorian A.Y., Tonchev V.: On conflict-avoiding codes of length n = 4m for three active users. IEEE Trans. Inform. Theory (to appear).

  11. Levenshtein V.I.: Conflict-avoiding codes for three active users and cyclic triple systems. preprint.

  12. Levenshtein V.I., Tonchev V.D.: Optimal conflict-avoiding codes for three active users. In: 2005 IEEE International Symposium on Information Theory, pp. 535–537, Adelaide, Australia, (2005).

  13. Massey J.L., Mathys P. (1985). The collision channel without feedback. IEEE Trans. Inform. Theory 31(2): 192–204

    Article  MATH  MathSciNet  Google Scholar 

  14. Mathys P. (1990). A class of codes for a T active users out of N multiple-access. IEEE Trans. Inform. Theory 36(6): 1206–1219

    Article  MATH  MathSciNet  Google Scholar 

  15. Momihara K., Müller M., Satoh J., Jimbo M.: Constant weight conflict-avoiding codes. SIAM J. Discr. Math. (to appear).

  16. Nguyen Q.A., Györfi L., Massey J.L. (1992). Constructions of binary constant weight cyclic codes and cyclically permutable codes. IEEE Trans. Inform. Theory 38(3): 940–949

    Article  MATH  MathSciNet  Google Scholar 

  17. Ribenboim P. (2001). Classical theory of algebraic numbers. Springer-Verlag, New York

    MATH  Google Scholar 

  18. Tsybakov B.S., Rubinov A.R. (2002). Some constructions of conflict-avoiding codes. Prob. Inf. Trans. 38(4): 268–279

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Momihara.

Additional information

Communicated by V.A. Zinoviev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Momihara, K. Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three. Des. Codes Cryptogr. 45, 379–390 (2007). https://doi.org/10.1007/s10623-007-9139-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9139-5

Keywords

keywords

Navigation