Skip to main content
Log in

Ideal secret sharing schemes whose minimal qualified subsets have at most three participants

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

One of the main open problems in secret sharing is the characterization of the access structures of ideal secret sharing schemes. Brickell and Davenport proved that every one of these ideal access structures is related in a certain way to a unique matroid. Specifically, they are matroid ports. In addition to the search of general results, this difficult open problem has been studied in previous works for several families of access structures. In this paper we do the same for access structures with rank 3, that is, structures whose minimal qualified subsets have at most three participants. We completely characterize and classify the rank-3 access structures that are matroid ports. We prove that all access structures with rank three that are ports of matroids greater than 3 are ideal. After the results in this paper, the only open problem in the characterization of the ideal access structures with rank three is to characterize the rank-3 matroids that can be represented by an ideal secret sharing scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beimel A., Tassa T., Weinreb E.: Characterizing ideal weighted threshold secret sharing. In: Second Theory of Cryptography Conference, TCC 2005. Lecture Notes in Computer Science, vol. 3378, pp. 600–619 (2005).

  2. Benaloh J., Leichter J.: Generalized secret sharing and monotone functions. In: Advances in Cryptology, CRYPTO’88. Lecture Notes in Computer Science, vol. 403, pp. 27–35 (1990).

  3. Blakley G.R.: Safeguarding cryptographic keys. AFIPS Conf. Proc. 48, 313–317 (1979)

    Google Scholar 

  4. Blundo C., De Santis A., De Simone R., Vaccaro U.: Tight bounds on the information rate of secret sharing schemes. Des. Codes Cryptogr. 11, 107–122 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blundo C., De Santis A., Gargano L., Vaccaro U.: On the information rate of secret sharing schemes. In: Advances in Cryptology - CRYPTO’92. Lecture Notes in Computer Science, vol. 740, pp. 148–167 (1993).

  6. Brickell E.F.: Some ideal secret sharing schemes. J. Combin. Math. Combin. Comput. 9, 105–113 (1989)

    MathSciNet  Google Scholar 

  7. Brickell E.F., Davenport D.M.: On the classification of ideal secret sharing schemes. J. Cryptol. 4, 123–134 (1991)

    MATH  Google Scholar 

  8. Capocelli R.M., De Santis A., Gargano L., Vaccaro U.: On the size of shares of secret sharing schemes. J. Cryptol. 6, 157–168 (1993)

    Article  MATH  Google Scholar 

  9. Csirmaz L.: The size of a share must be large. J. Cryptol. 10, 223–231 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Farràs O., Martí-Farré J., Padró C.: Ideal multipartite secret sharing schemes. In: Advances in Cryptology, Eurocrypt 2007. Lecture Notes in Computer Science, vol. 4515, pp. 448–465 (2007).

  11. Ito M., Saito A., Nishizeki T.: Secret sharing scheme realizing general access structure. Electron. Comm. Japan Part III Fund. Electron. Sci. 72, 56–63 (1989)

    Article  MathSciNet  Google Scholar 

  12. Jackson W.-A., Martin K.M.: Perfect secret sharing schemes on five participants. Des. Codes Cryptogr. 9, 267–286 (1996)

    MATH  MathSciNet  Google Scholar 

  13. Karnin E.D., Greene J.W., Hellman M.E.: On secret sharing systems. IEEE Trans. Inform. Theory. 29, 35–41 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lehman A.: A solution of the Shannon switching game. J. Soc. Ind. Appl. Math. 12, 687–725 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lehman A.: Matroids and ports. Notices Amer. Math. Soc. 12, 356–360 (1976)

    Google Scholar 

  16. Martí-Farré J., Padró C.: Secret sharing schemes on sparse homogeneous access structures with rank three. Electron. J. Combin. 11(1), Research Paper 72, 16 pp. (electronic) (2004).

  17. Martí-Farré J., Padró C.: Secret sharing schemes with three or four minimal qualified subsets. Des. Codes Cryptogr. 34, 17–34 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martí-Farré J., Padró C.: Secret sharing schemes on access structures with intersection number equal to one. Discrete Appl. Math. 154, 552–563 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Martí-Farré J.: A note on secret sharing schemes with three homogeneous access structure. Inform. Process. Lett. 102, 133–137 (2007)

    Article  MathSciNet  Google Scholar 

  20. Martí-Farré J., Padró C.: On secret sharing schemes, matroids and polymatroids. In: Fourth IACR Theory of Cryptography Conference TCC 2007. Lecture Notes in Computer Science, vol. 4392, pp. 273–290 (2007).

  21. Matúš F.: Matroid representations by partitions. Discrete Math. 203, 169–194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Oxley J.G.: Matroid Theory. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1992)

    Google Scholar 

  23. Padró C., Sáez G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inform. Theory 46, 2596–2604 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Seymour P.D.: A forbidden minor characterization of matroid ports. Quart. J. Math. Oxford Ser. 27, 407–413 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Seymour P.D.: On secret-sharing matroids. J. Combin. Theory Ser. B 56, 69–73 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shamir A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Simonis J., Ashikhmin A.: Almost affine codes. Des. Codes Cryptogr. 14, 179–197 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stinson D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2, 357–390 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  29. Welsh D.J.A.: Matroid Theory. Academic Press, London (1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Padró.

Additional information

Communicated by H. Wang.

A previous version of this paper appeared in Fifth Conference on Security and Cryptography for Networks, SCN 2006, Lecture Notes in Computer Science 4116 (2006) 201–215.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martí-Farré, J., Padró, C. Ideal secret sharing schemes whose minimal qualified subsets have at most three participants. Des. Codes Cryptogr. 52, 1–14 (2009). https://doi.org/10.1007/s10623-008-9264-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-008-9264-9

Keywords

Mathematics Subject Classification (2000)