Skip to main content
Log in

On circulant self-dual codes over small fields

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We construct self-dual codes over small fields \({\mathbb {F}_q}\) with q = 3, 4, 5, 7, 8, 9 of moderate length with long cycles in the automorphism group. With few exceptions, the codes achieve or improve the known lower bounds on the minimum distance of self-dual codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arasu K.T., Chen Y.Q., Gulliver T.A., Song W.: Self-dual codes over \({\mathbb {F}_3}\) and negacirculant conference matrices. In: Proceedings 2006 IEEE International Symposium on Information Theory, Seattle, WA, pp. 1301–1304, July 2006.

  • Assmus E.F. Jr., Mattson H.F. Jr.: On weights in quadratic-residue codes. Discret. Math. 3, 1–20 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Beenker G.F.M.: A note on extended quadratic residue codes over GF(9) and their ternary images. IEEE Trans. Inf. Theory 30, 403–405 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Bosma W., Cannon J.J., Playoust C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Brouwer A.E.: Bounds on the size of linear codes. In: Pless, V.S., Huffman, W.C.(eds) Handbook of Coding Theory, pp. 295–461. Elsevier, Amsterdam (1998)

    Google Scholar 

  • Gaborit P.: Quadratic double circulant codes over fields. J. Comb. Theory Ser. A 97, 85–107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Gaborit P., Otmani A.: Tables of self-dual codes. Online available at http://www.unilim.fr/pages_perso/philippe.gaborit/SD/.

  • Gaborit P., Otmani A.: Experimental constructions of self-dual codes. Finite Fields Appl. 9, 372–394 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Gaborit P., Zémor G.: Asymptotic improvement of the Gilbert-Varshamov bound for binary linear codes. IEEE Trans. Inf. Theory 54, 3865–3872 (2000)

    Article  Google Scholar 

  • Georgiou S., Koukouvinos C.: New self-dual codes over GF(5). In: Walker M. (ed.) Proceedings Cryptography and Coding: 7th IMA International Conference. Lecture Notes in Computer Science, vol. 1746, pp. 63–69. Springer, Heidelberg (1999).

  • Grassl M.: Bounds on the minimum distance of linear codes. Available online at http://www.codetables.de.

  • Grassl M.: Searching for linear codes with large minimum distance. In: Bosma, W., Cannon, J.(eds) Discovering Mathematics with Magma—Reducing the Abstract to the Concrete, pp. 287–313. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Gulliver T.A.: Optimal double circulant self-dual codes over \({\mathbb {F}_4}\) . IEEE Trans. Inf. Theory 46, 271–274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Gulliver T.A., Harada M.: New optimal self-dual codes over GF(7). Graphs Comb. 15, 175–186 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Gulliver T.A., Harada M.: Double circulant self-dual codes over GF(5). Ars Comb. 56, 3–13 (2000)

    MathSciNet  MATH  Google Scholar 

  • Gulliver T.A., Harada M.: New nonbinary self-dual codes. IEEE Trans. Inf. Theory 54, 415–417 (2008)

    Article  MathSciNet  Google Scholar 

  • Gulliver T.A., Harada M., Miyabayashi H.: Double circulant and quasi-twisted self-dual codes over \({\mathbb {F}_5}\) and \({\mathbb {F}_7}\) . Adv. Math. Commun. 1, 223–238 (2007)

    Article  MathSciNet  Google Scholar 

  • Gulliver T.A., Harada M., Miyabayashi H.: Double circulant self-dual codes over \({\mathbb {F}_4}\) II. Australas. J. Comb. 39, 163–174 (2007)

    MathSciNet  MATH  Google Scholar 

  • Gulliver T.A., Kim J.-L., Lee Y.: New MDS or near-MDS self-dual codes. IEEE Trans. Inf. Theory, 54, 4354–4360 (2008)

    Article  MathSciNet  Google Scholar 

  • Harada M., Holzmann W.H., Kharaghani H., Khorvash M.: Extremal ternary self-dual codes constructed from negacirculant matrices. Graphs Comb. 23, 401–417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Harada M., Östergård P.R.J.: Self-dual and maximal self-orthogonal codes over \({\mathbb {F}_7}\) . Discrete Math. 256, 471–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Harada M., Östergård P.R.J.: On the classification of self-dual codes over \({{\mathbb F}_5}\) . Graphs Comb. 19, 203–214 (2003)

    MATH  Google Scholar 

  • Jenson R.A.: A double circulant presentation of quadratic residue codes. IEEE Trans. Inf. Theory 26, 223–227 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin M.: New binary coding results by circulants. IEEE Trans. Inf. Theory 15, 81–92 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Kim J.-L., Lee Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Comb. Theory Ser. A 105, 79–95 (2004)

    Article  MATH  Google Scholar 

  • Lam C.W.H., Pless V.S.: There is no (24,12,10) self-dual quaternary code. IEEE Trans. Inf. Theory 36, 1153–1156 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Leon J.S.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28, 496–511 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • Leon J.S., Pless V.S., Sloane N.J.A.: Self-dual codes over GF(5). J. Comb. Theory Ser. A 32, 178–194 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • MacWilliams F.J., Odlyzko A.M., Sloane N.J.A., Ward H.N.: Self-dual codes over GF(4). J. Comb. Theory Ser. A 25, 288–318 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  • Majer V.: Algorithmen zur Berechnung von Automorphismen von Codes. Universität Karlsruhe (TH), Diplomarbeit (2006)

    Google Scholar 

  • Nebe G., Rains E.M., Sloane N.J.A.: Self-Dual Codes and Invariant Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  • Pless V.S.: Symmetry codes over GF(3) and new five-designs. J. Comb. Theory Ser. A 12, 119–142 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Pless V.S., Tonchev V.D.: Self-dual codes over GF(7). IEEE Trans. Inf. Theory 33, 723–727 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Rains E.M.: Nonbinary quantum codes. IEEE Trans. Inf. Theory 45, 1827–1832 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Sloane N.J.A.: Is there a (72,36) d = 16 self-dual code?. IEEE Trans. Inf. Theory 19, 251 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Grassl.

Additional information

Communicated by V.D. Tonchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassl, M., Gulliver, T.A. On circulant self-dual codes over small fields. Des. Codes Cryptogr. 52, 57–81 (2009). https://doi.org/10.1007/s10623-009-9267-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9267-1

Keywords

Mathematics Subject Classifications (2000)

Navigation