Skip to main content
Log in

A generalization of Meshulam’s theorem on subsets of finite abelian groups with no 3-term arithmetic progression

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let r 1, …, r s be non-zero integers satisfying r 1 + ⋯ + r s = 0. Let G \({\simeq \mathbb{Z} / k_1 \mathbb{Z}\oplus \cdots \oplus \mathbb{Z} / k_n \mathbb{Z}}\) be a finite abelian group with k i |k i-1(2 ≤ in), and suppose that (r i , k 1) = 1(1 ≤ is). Let \({D_{\mathbf r}(G)}\) denote the maximal cardinality of a set \({A \subseteq G}\) which contains no non-trivial solution of r 1 x 1 + ⋯ + r s x s = 0 with \({x_i\,\in\,A (1 \le i \le s)}\). We prove that \({D_{\mathbf r}(G) \ll |G|/n^{s-2}}\). We also apply this result to study problems in finite projective spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain J.: Roth’s theorem on progressions revisited. J. Anal. Math. 104, 155–192 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Heath-Brown D.R.: Integer sets containing no arithmetic progressions. J. London Math. Soc. 35, 385–394 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hirschfeld J., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Finite Geometries, Development in Mathematics, vol. 3, pp. 201–246. Kluwer Academic Publishers, Dordrecht (2001).

  4. Meshulam R.: On subsets of finite abelian groups with no 3-term arithmetic progressions. J. Combin. Theory Ser. A 71, 168–172 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Roth K.F.: On certain sets of integers. J. London Math. Soc. 28, 104–109 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  6. Storme L., Thas J., Vereecke S.: New upper bounds for the sizes of caps in finite projective spaces. J. Geom. 73, 176–193 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Szemerédi E.: Integer sets containing no arithmetic progressions. Acta Math. Hung. 56, 155–158 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig V. Spencer.

Additional information

Communicated by S. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YR., Spencer, C.V. A generalization of Meshulam’s theorem on subsets of finite abelian groups with no 3-term arithmetic progression. Des. Codes Cryptogr. 52, 83–91 (2009). https://doi.org/10.1007/s10623-009-9268-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9268-0

Keywords

Mathematics Subject Classifications (2000)