Skip to main content
Log in

On constructions for optimal two-dimensional optical orthogonal codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Two-dimensional optical orthogonal codes (2-D OOCs) are of current practical interest in fiber-optic code-division multiple-access networks as they enable optical communication at lower chip rate to overcome the drawbacks of nonlinear effects in large spreading sequences of one-dimensional codes. A 2-D OOC is said to be optimal if its cardinality is the largest possible. In this paper, we develop some constructions for optimal 2-D OOCs using combinatorial design theory. As an application, these constructions are used to construct an infinite family of new optimal 2-D OOCs with auto-correlation 1 and cross-correlation 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel R.J.R., Buratti M.: Some progress on (v, 4, 1) difference families and optical orthogonal codes. J. Combin. Theory A 106, 59–75 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baker C.: Extended Skolem sequences. J. Comb. Des. 3, 363–379 (1995)

    Article  MATH  Google Scholar 

  3. Beth T., Jungnickel D., Lenz H.: Design Theory. Cambridge Univ. Press, Cambridge, UK (1999)

    Google Scholar 

  4. Bitan S., Etzion T.: Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans. Inform. Theory 41, 77–87 (Jan. 1995).

    Google Scholar 

  5. Brickell E.F., Wei V.K.: Optical orthogonal codes and cyclic block designs. Congr. Numer. 58, 175–192 (1987)

    MathSciNet  Google Scholar 

  6. Buratti M.: A powerful method for constructing difference families and optimal optical orthogonal codes. Des. Codes Cryptogr. 5, 13–25 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buratti M.: Recursive constructions for difference matrices and relative difference families. J. Comb. Des. 6, 165–182 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buratti M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cao H., Wei R., Su Y.: Combinatorial constructions for optimal optical two-dimensional orthogonal codes. IEEE Trans. Inform. Theory 55, 1387–1394 (2009)

    Article  Google Scholar 

  10. Chang Y.: Some cyclic BIBDs with block size four. J. Comb. Des. 12, 177–183 (2004)

    Article  MATH  Google Scholar 

  11. Chang Y., Fuji-Hara R., Miao Y.: Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans. Inform. Theory 49, 1283–1292 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chang Y., Ji L.: Optimal (4up, 5, 1) optical orthogonal codes. J. Comb. Des. 12, 346–361 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chang Y., Miao Y.: Constructions for optimal optical orthogonal codes. Discrete Math. 261, 127–139 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chang Y., Yin J.: Further results on optimal optical orthogonal codes with weight 4. Discrete Math. 279, 135–151 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chu W., Colbourn C.J.: Optimal (v, 4, 2)-OOC of small orders. Discrete Math. 279, 163–172 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chu W., Colbourn C.J.: Recursive constructions for optimal (v, 4, 2)-OOCs. J. Comb. Des. 12, 333–345 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chu W., Golomb S.W.: A new recursive construction for optical orthogonal codes. IEEE Trans. Inform. Theory 49, 3072–3076 (2003)

    Article  MathSciNet  Google Scholar 

  18. Chung H., Kumar P.V.: Optical orthogonal codes—new bounds and an optimal construction. IEEE Trans. Inform. Theory 36, 866–873 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chung F.R.K., Salehi J.A., Wei V.K.: Optimal optical orthogonal codes: Design, analysis, and applications. IEEE Trans. Inform. Theory 35, 595–604 (1989); correction, IEEE Trans. Inform. Theory 38, 1429 (May 1992).

    Google Scholar 

  20. Colbourn C.J., Dinitz J.H.: The CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton, FL (2007)

    MATH  Google Scholar 

  21. Colbourn C.J., Hoffman D.G., Rees R.: A new class of divisible designs with block size three. J. Combin. Theory A 59, 73–89 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fuji-Hara R., Miao Y.: Optimal optical orthogonal codes: Their bounds and new optimal constructions. IEEE Trans. Inform. Theory 46, 2396–2406 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fuji-Hara R., Miao Y., Yin J.: Optimal (9v, 4, 1) optical orthogonal codes. SIAM J. Discrete Math. 14, 256–266 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gallant R.P., Jiang Z., Ling A.C.H.: The spectrum of cyclic group divisible designs with block size three. J. Comb. Des. 7, 95–105 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ge G., Yin J.: Constructions for optimal (v, 4, 1) optical orthogonal codes. IEEE Trans. Inform. Theory 47, 2998–3004 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hall M. Jr.: Combinatorial Theory, 2nd edn. Wiley (1986).

  27. Hanani H.: Balanced incomplete block designs and related designs. Discrete Math. 11, 255–369 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kwong W.C., Yang G.C.: Extended carrier-hopping prime codes for wavelength-time optical code-division multiple access. IEEE Trans. Commun. 52, 1084–1091 (2004)

    Article  Google Scholar 

  29. Ma S., Chang Y.: A new class of optimal optical orthogonal codes with weight five. IEEE Trans. Inform. Theory 50, 1848–1850 (2004)

    Article  MathSciNet  Google Scholar 

  30. Ma S., Chang Y.: Constructions of optimal optical orthogonal codes with weight five. J. Comb. Des. 13, 54–69 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Maric S.V., Lau V.K.N.: Multirate fiber-optic CDMA: system design and performance analysis. J. Lightwave Technol. 16, 9–17 (1998)

    Article  Google Scholar 

  32. Maric S.V., Moreno O., Corrada C.: Multirate transmission in fiber-optic LAN’s using optical CDMA. J. Lightwave Technol. 14, 2149–2153 (1996)

    Article  Google Scholar 

  33. Mendez A.J., Gagliardi R.M., Feng H.X.C., Heritage J.P., Morookian J.M.: Strategies for realizing optical cdma for dense, high-speed, long span, optical network applications. J. Lightwave Technol. 168, 1685–1695 (2000)

    Article  Google Scholar 

  34. Mendez A.J., Gagliardi R.M., Hernandez V.J., Bennett C.V., Lennon W.j.: Design and performance analysis of wavelength/time (W/T) matrix codes for optical CDMA. J. Lightwave Technol. 21, 2524–2533 (2003)

    Article  Google Scholar 

  35. Miyamoto N., Mizuno H., Shinohara S.: Optical orthogonal codes obtained from conics on finite projective planes. Finite Fields Th. App. 10, 405–411 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Omrani R., Kummar P.V.: Codes for optical CDMA. In: Proc. of SETA 2006. Springer-Verlags Lecture Notes in Computer Science Series, vol. 4086, pp. 34–46 (2006).

  37. Peltesohn R.: Eine Losung der beiden Heffterschen Differenzenprobleme. Comp. Math. 6, 251–257 (1939)

    MathSciNet  Google Scholar 

  38. Salehi J.A., Brackett C.A.: Code-division multiple access techniques in optical fiber networks: part 1 and part 2. IEEE Trans. Commun. 37, 824–842 (1989)

    Article  Google Scholar 

  39. Shivaleela E.S., Selvarajan A., Srinivas T.: Two-dimensional optical orthogonal codes for fiber-optic cdma networks. J. Lightwave Technol. 23, 647–654 (2005)

    Article  Google Scholar 

  40. Shivaleela E.S., Sivarajan K.N., Selvarajan A.: Design of a new family of two-dimensional codes for fiber-optic cdma networks. J. Lightwave Technol. 16, 501–508 (1998)

    Article  Google Scholar 

  41. Tan̆evski L., Andonovic I.: Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security. J. Lightwave Technol. 14, 2636–2647 (1996)

    Article  Google Scholar 

  42. Tan̆evski L., Andonovic I., Tur M., Budin J.: Massive optical LANs using wavelength hopping/time spreading with increased security. IEEE Photonics Technol. Lett. 8, 935–937 (1996)

    Article  Google Scholar 

  43. Tang Y., Yin J.: The combinatorial construction for a class of optimal optical orthogonal codes. Sci. China A 45, 1268–1275 (2002)

    MATH  MathSciNet  Google Scholar 

  44. Yang G.C., Kwong W.C.: Two-dimensional spatial signature patterns. IEEE Trans. Commun. 44, 184–191 (1996)

    Article  Google Scholar 

  45. Yang G.C., Kwong W.C.: Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks. IEEE Trans. Communun. 45, 1426–1434 (1997)

    Article  Google Scholar 

  46. Yim R.M.H., Chen L.R., Bajcsy J.: Design and performance of 2-D codes for wavelength-time optical CDMA. IEEE Photonics Technol. Lett. 14, 714–716 (2002)

    Article  Google Scholar 

  47. Yin J.: Some combinatorial constructions for optical orthogonal codes. Discrete Math. 185, 201–219 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yin J.: A general construction for optimal cyclic packing designs. J. Combin. Theory A 97, 272–284 (2002)

    Article  MATH  Google Scholar 

  49. Yin J.: Cyclic difference packing and covering arrays. Des. Codes Cryptogr. 37, 281–292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Wang.

Additional information

Communicated by Charles J. Colbourn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Shan, X. & Yin, J. On constructions for optimal two-dimensional optical orthogonal codes. Des. Codes Cryptogr. 54, 43–60 (2010). https://doi.org/10.1007/s10623-009-9308-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9308-9

Keywords

Mathematics Subject Classifications (2000)

Navigation