Abstract
In this work, we investigate linear codes over the ring \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) . We first analyze the structure of the ring and then define linear codes over this ring which turns out to be a ring that is not finite chain or principal ideal contrary to the rings that have hitherto been studied in coding theory. Lee weights and Gray maps for these codes are defined by extending on those introduced in works such as Betsumiya et al. (Discret Math 275:43–65, 2004) and Dougherty et al. (IEEE Trans Inf 45:32–45, 1999). We then characterize the \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) -linearity of binary codes under the Gray map and give a main class of binary codes as an example of \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) -linear codes. The duals and the complete weight enumerators for \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) -linear codes are also defined after which MacWilliams-like identities for complete and Lee weight enumerators as well as for the ideal decompositions of linear codes over \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) are obtained.
Similar content being viewed by others
References
Betsumiya K., Ling S., Nemenzo F.R.: Type II codes over \({\mathbb{F}_{2^m}+u\mathbb{F}_{2^m}}\) . Discrete Math. 275, 43–65 (2004)
Carlet C.: \({\mathbb{Z}_{2^k}}\) -linear codes. IEEE Trans. Inform. Theory 44, 1543–1547 (1998)
Dougherty S.T., Gaborit P., Harada M., Munemasa A., Solé P.: Type IV self-dual codes over rings. IEEE Trans. Inform. Theory 45, 2345–2360 (1999)
Dougherty S.T., Gaborit P., Harada M., Solé P.: Type II codes over \({\mathbb{F}_2+u\mathbb{F}_2}\) . IEEE Trans. Inform. Theory 45, 32–45 (1999)
Hammons A.R., Kumar V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}_4}\) -linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)
Huffman W.C.: Decompositions and extremal Type II codes over \({\mathbb{Z}_4}\) . IEEE Trans. Inform. Theory 44, 800–809 (1998)
MacWilliams F.J., Sloane N.J.A.: The theory of error-correcting codes. North-Holland, Amsterdam (1977)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J.D. Key.
Rights and permissions
About this article
Cite this article
Yildiz, B., Karadeniz, S. Linear codes over \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) . Des. Codes Cryptogr. 54, 61–81 (2010). https://doi.org/10.1007/s10623-009-9309-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-009-9309-8
Keywords
- Lee weights
- Gray maps
- Reed–Muller codes
- Complete weight enumerator
- Mac Williams identities
- Ideal decompositions