Skip to main content

Linear codes over \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this work, we investigate linear codes over the ring \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) . We first analyze the structure of the ring and then define linear codes over this ring which turns out to be a ring that is not finite chain or principal ideal contrary to the rings that have hitherto been studied in coding theory. Lee weights and Gray maps for these codes are defined by extending on those introduced in works such as Betsumiya et al. (Discret Math 275:43–65, 2004) and Dougherty et al. (IEEE Trans Inf 45:32–45, 1999). We then characterize the \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) -linearity of binary codes under the Gray map and give a main class of binary codes as an example of \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) -linear codes. The duals and the complete weight enumerators for \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) -linear codes are also defined after which MacWilliams-like identities for complete and Lee weight enumerators as well as for the ideal decompositions of linear codes over \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betsumiya K., Ling S., Nemenzo F.R.: Type II codes over \({\mathbb{F}_{2^m}+u\mathbb{F}_{2^m}}\) . Discrete Math. 275, 43–65 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Carlet C.: \({\mathbb{Z}_{2^k}}\) -linear codes. IEEE Trans. Inform. Theory 44, 1543–1547 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dougherty S.T., Gaborit P., Harada M., Munemasa A., Solé P.: Type IV self-dual codes over rings. IEEE Trans. Inform. Theory 45, 2345–2360 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dougherty S.T., Gaborit P., Harada M., Solé P.: Type II codes over \({\mathbb{F}_2+u\mathbb{F}_2}\) . IEEE Trans. Inform. Theory 45, 32–45 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hammons A.R., Kumar V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}_4}\) -linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Huffman W.C.: Decompositions and extremal Type II codes over \({\mathbb{Z}_4}\) . IEEE Trans. Inform. Theory 44, 800–809 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. MacWilliams F.J., Sloane N.J.A.: The theory of error-correcting codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahattin Yildiz.

Additional information

Communicated by J.D. Key.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildiz, B., Karadeniz, S. Linear codes over \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) . Des. Codes Cryptogr. 54, 61–81 (2010). https://doi.org/10.1007/s10623-009-9309-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9309-8

Keywords

Mathematics Subject Classifications (2000)