Skip to main content

The maximum size of a partial 3-spread in a finite vector space over GF(2)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let n ≥ 3 be an integer, let V n (2) denote the vector space of dimension n over GF(2), and let c be the least residue of n modulo 3. We prove that the maximum number of 3-dimensional subspaces in V n (2) with pairwise intersection {0} is \({\frac{2^n-2^c}{7}-c}\) for n ≥ 8 and c = 2. (The cases c = 0 and c = 1 have already been settled.) We then use our results to construct new optimal orthogonal arrays and (s, k, λ)-nets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beutelspacher A.: Partial spreads in finite projective spaces and partial designs. Math. Zeit. 145, 211–229 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beutelspacher A.: Partitions of finite vector spaces: an application of the Frobenius number in geometry. Arch. Math. 31, 202–208 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blinco A., El-Zanati S., Seelinger G., Sissokho P., Spence L., Vanden Eynden C.: On vector space partitions and uniformly resolvable designs. Des. Codes Cryptogr. 15, 69–77 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bu T.: Partitions of a vector space. Discrete Math. 31, 79–83 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clark W., Dunning L.: Partial partitions of vector spaces arising from the construction of byte error control codes. Ars Combin. 33, 161–177 (1992)

    MATH  MathSciNet  Google Scholar 

  6. Colbourn C., Greig M.: Orthogonal arrays of index more than one. In: Colbourn, C., Dinitz, J. (eds) The CRC Handbook of Combinatorial Designs. CRC Press Series on Discrete Mathematics and its Applications., pp. 219–228. CRC Press, Boca Raton, FL (2007)

    Google Scholar 

  7. De Beule J., Metsch K.: The maximum size of a partial spread in H(5, q 2) is q 3 + 1. J. Combin. Theory A 114, 761–768 (2007)

    Article  MATH  Google Scholar 

  8. Drake D., Freeman J.: Partial t-spreads and group constructible (s, r, μ)-nets. J. Geom. 13, 211–216 (1979)

    Article  MathSciNet  Google Scholar 

  9. Eisfeld J., Storme L.: (Partial) t-spreads and minimal t-covers in finite spaces. http://citeseer.ist.psu.edu/427583.html, 29 pp.

  10. Eisfeld J., Storme L., Sziklai P.: On the spectrum of the sizes of maximal partial line spreads in PG(2n, q), n ≥ 3. Des. Codes Cryptogr. 36, 101–110 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. El-Zanati S., Seelinger G., Sissokho P., Spence L., Vanden Eynden C.: On partitions of finite vector spaces of small dimension over GF(2). Discrete Math. 309, 4727–4735 (2009). Special issue: Graphs and Designs in honour of Anthony Hilton.

    Google Scholar 

  12. Gács A., Szönyi T.: On maximal partial spreads in PG(n, q). Des. Codes Cryptogr. 29, 123–129 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Govaerts P., Storme L.: On a particular class of minihypers and its applications. I. The result for general q. Des. Codes Cryptogr. 28, 51–63 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Heden O.: Partitions of finite abelian groups. Eur. J. Combin. 7, 11–25 (1986)

    MATH  MathSciNet  Google Scholar 

  15. Heden O.: A maximal partial spread of size 45 in PG(3, 7). Des. Codes Cryptogr. 22, 331–334 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Heden O.: Maximal partial spreads and the modular n-queen problem III. Discrete Math. 243, 135–150 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hong S., Patel A.: A general class of maximal codes for computer applications. IEEE Trans. Comput. C-21, 1322–1331 (1972)

    Article  MathSciNet  Google Scholar 

  18. Jungnickel D., Storme L.: A note on maximal partial spreads with deficiency q + 1, q even. J. Combin. Theory A 102, 443–446 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sissokho.

Additional information

Communicated by Dieter Jungnickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Zanati, S., Jordon, H., Seelinger, G. et al. The maximum size of a partial 3-spread in a finite vector space over GF(2). Des. Codes Cryptogr. 54, 101–107 (2010). https://doi.org/10.1007/s10623-009-9311-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9311-1

Keywords

Mathematics Subject Classification (2000)