Abstract
Let n ≥ 3 be an integer, let V n (2) denote the vector space of dimension n over GF(2), and let c be the least residue of n modulo 3. We prove that the maximum number of 3-dimensional subspaces in V n (2) with pairwise intersection {0} is \({\frac{2^n-2^c}{7}-c}\) for n ≥ 8 and c = 2. (The cases c = 0 and c = 1 have already been settled.) We then use our results to construct new optimal orthogonal arrays and (s, k, λ)-nets.
Similar content being viewed by others
References
Beutelspacher A.: Partial spreads in finite projective spaces and partial designs. Math. Zeit. 145, 211–229 (1975)
Beutelspacher A.: Partitions of finite vector spaces: an application of the Frobenius number in geometry. Arch. Math. 31, 202–208 (1978)
Blinco A., El-Zanati S., Seelinger G., Sissokho P., Spence L., Vanden Eynden C.: On vector space partitions and uniformly resolvable designs. Des. Codes Cryptogr. 15, 69–77 (2008)
Bu T.: Partitions of a vector space. Discrete Math. 31, 79–83 (1980)
Clark W., Dunning L.: Partial partitions of vector spaces arising from the construction of byte error control codes. Ars Combin. 33, 161–177 (1992)
Colbourn C., Greig M.: Orthogonal arrays of index more than one. In: Colbourn, C., Dinitz, J. (eds) The CRC Handbook of Combinatorial Designs. CRC Press Series on Discrete Mathematics and its Applications., pp. 219–228. CRC Press, Boca Raton, FL (2007)
De Beule J., Metsch K.: The maximum size of a partial spread in H(5, q 2) is q 3 + 1. J. Combin. Theory A 114, 761–768 (2007)
Drake D., Freeman J.: Partial t-spreads and group constructible (s, r, μ)-nets. J. Geom. 13, 211–216 (1979)
Eisfeld J., Storme L.: (Partial) t-spreads and minimal t-covers in finite spaces. http://citeseer.ist.psu.edu/427583.html, 29 pp.
Eisfeld J., Storme L., Sziklai P.: On the spectrum of the sizes of maximal partial line spreads in PG(2n, q), n ≥ 3. Des. Codes Cryptogr. 36, 101–110 (2005)
El-Zanati S., Seelinger G., Sissokho P., Spence L., Vanden Eynden C.: On partitions of finite vector spaces of small dimension over GF(2). Discrete Math. 309, 4727–4735 (2009). Special issue: Graphs and Designs in honour of Anthony Hilton.
Gács A., Szönyi T.: On maximal partial spreads in PG(n, q). Des. Codes Cryptogr. 29, 123–129 (2003)
Govaerts P., Storme L.: On a particular class of minihypers and its applications. I. The result for general q. Des. Codes Cryptogr. 28, 51–63 (2003)
Heden O.: Partitions of finite abelian groups. Eur. J. Combin. 7, 11–25 (1986)
Heden O.: A maximal partial spread of size 45 in PG(3, 7). Des. Codes Cryptogr. 22, 331–334 (2001)
Heden O.: Maximal partial spreads and the modular n-queen problem III. Discrete Math. 243, 135–150 (2002)
Hong S., Patel A.: A general class of maximal codes for computer applications. IEEE Trans. Comput. C-21, 1322–1331 (1972)
Jungnickel D., Storme L.: A note on maximal partial spreads with deficiency q + 1, q even. J. Combin. Theory A 102, 443–446 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Dieter Jungnickel.
Rights and permissions
About this article
Cite this article
El-Zanati, S., Jordon, H., Seelinger, G. et al. The maximum size of a partial 3-spread in a finite vector space over GF(2). Des. Codes Cryptogr. 54, 101–107 (2010). https://doi.org/10.1007/s10623-009-9311-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-009-9311-1