Skip to main content
Log in

Generalized Reed–Muller codes over \({\mathbb{Z}_q}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We have given a generalization of Reed–Muller codes over the prime power integer residue ring \({\mathbb{Z}_q}\). These codes are analogs of generalized Reed–Muller (GRM) codes over finite fields. We mainly focus on primitive GRM codes, which are basically a generalization of Quaternary Reed–Muller (QRM) codes. We have also given a multivariate representation of these codes. Non-primitive GRM codes over \({\mathbb{Z}_q}\) are also briefly discussed. It has been shown that GRM codes over \({\mathbb{Z}_q}\) are free extended cyclic codes. A trace description of these codes is also given. We have obtained formulas for their ranks and also obtained expressions for their minimum Hamming distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus E.F. Jr., Key J.D.: Designs and Their Codes. Cambridge Tracts in Mathematics 103. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  2. Assmus E.F. Jr., Key J.D.: Polynomial codes and finite geometries. In: Pless, V.S., Huffman, W.C. (eds) Handbook of Coding Theory, North Holland, Amsterdam (1998)

    Google Scholar 

  3. Aydin N., Ray-Chaudhuri D.K.: Quasi-cyclic codes over \({\mathbb{Z}_4}\) and some new binary codes. IEEE Trans. Inform. Theory 48, 2065–2069 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger T., Charpin P.: The permutation group of affine-invariant extended cyclic codes. IEEE Trans. Inform. Theory 42, 2194–2209 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bhaintwal M., Wasan S.K.: On quasi-cyclic codes over \({\mathbb{Z}_q}\). Accepted for publication in Appl. Algebra Eng. Comm. Comput. (2009).

  6. Blackford J.T., Ray-Chaudhuri D.K.: A transform approach to permutation groups of cyclic codes over Galois rings. IEEE Trans. Inform. Theory 46, 2350–2358 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blake I.F.: Codes over certain rings. Inform. Control 20, 396–404 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blake I.F., Mullin R.C.: Mathematical Theory of Coding. Academic Press, New York (1975)

    MATH  Google Scholar 

  9. Borges J., Fernadez C., Phelps K.T.: Quaternary Reed–Muller codes. IEEE Trans. Inform. Theory 51, 2686–2691 (2005)

    Article  MathSciNet  Google Scholar 

  10. Calderbank A.R., Sloane N.J.A.: Modular and p-adic cyclic codes. Des. Codes Cryptogr. 6, 21–35 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Delsarte P., Goethals J.M., Macwilliams F.J.: Generalized Reed–Muller codes and their relatives. Inform. Control 16, 403–442 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  12. Delsarte P., McEliece R.J.: Zeros of functions in finite abelian group algebras. Am. J. Math. 98, 197–224 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dey B.K., Rajan B.S.: Affine invariant extended cyclic codes over Galois rings. IEEE Trans. Inform. Theory 50, 691–698 (2004)

    Article  MathSciNet  Google Scholar 

  14. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}_4}\) linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  16. Kasami T., Lin S., Peterson W.W.: New generalization of Reed–Muller codes part I: primitive codes. IEEE Trans. Inform. Theory 14, 189–199 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kasami T., Lin S., Peterson W.W.: Some results on cyclic codes which are invariant under the affine group and their applications. Inform. Control 11, 475–496 (1968)

    Article  MathSciNet  Google Scholar 

  18. McDonald B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)

    MATH  Google Scholar 

  19. Norton G.H., Sălăgean A.: On the structures of linear and cyclic codes over finite chain rings. Appl. Algebra Eng. Comm. Comput. 10, 489–506 (2000)

    Article  MATH  Google Scholar 

  20. Paterson K.G.: Generalized Reed–Muller codes and power control in OFDM modulation. IEEE Trans. Inform. Theory 46, 104–120 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peterson W.W., Weldon E.J. Jr.: Error-Correcting Codes. MIT Press, Cambridge (1972)

    MATH  Google Scholar 

  22. Pless V., Qian Z.: Cyclic codes and quadratic residue codes over \({\mathbb{Z}_4}\). IEEE Trans. Inform. Theory 42, 1594–1600 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shankar P.: On BCH codes over arbitrary integer rings. IEEE Trans. Inform. Theory 25, 480–483 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wan Z.X.: Quaternary Codes. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  25. Wan Z.X.: Cyclic codes over Galois rings. Algebra Colloq. 6, 291–304 (1999)

    MATH  MathSciNet  Google Scholar 

  26. Wan Z.X.: Lectures on Finite Fields and Galois Rings. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  27. Wasan S.K.: On codes over \({\mathbb{Z}_m}\). IEEE Trans. Inform. Theory 28, 117–120 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Weldon E.J. Jr.: New generalizations of the Reed–Muller codes part II: nonprimitive codes. IEEE Trans. Inform. Theory 14, 199–205 (1968)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maheshanand Bhaintwal.

Additional information

Communicated by T. Helleseth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhaintwal, M., Wasan, S.K. Generalized Reed–Muller codes over \({\mathbb{Z}_q}\) . Des. Codes Cryptogr. 54, 149–166 (2010). https://doi.org/10.1007/s10623-009-9315-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9315-x

Keywords

Mathematics Subject Classification (2000)

Navigation