Abstract
In (k, n) visual cryptographic schemes (VCS), a secret image is encrypted into n pages of cipher text, each printed on a transparency sheet, which are distributed among n participants. The image can be visually decoded if any k(≥2) of these sheets are stacked on top of one another, while this is not possible by stacking any k − 1 or fewer sheets. We employ a Kronecker algebra to obtain necessary and sufficient conditions for the existence of a (k, n) VCS with a prior specification of relative contrasts that quantify the clarity of the recovered image. The connection of these conditions with an L 1-norm formulation as well as a convenient linear programming formulation is explored. These are employed to settle certain conjectures on contrast optimal VCS for the cases k = 4 and 5. Furthermore, for k = 3, we show how block designs can be used to construct VCS which achieve optimality with respect to the average and minimum relative contrasts but require much smaller pixel expansions than the existing ones.
Similar content being viewed by others
References
Adhikari A., Bose M., Kumar D., Roy B.: Applications of partially balanced incomplete block designs in developing (2, n) visual cryptographic schemes. IEICE Trans. Fund. E90-A, 949–951 (2007)
Ateniese G., Blundo C., De Santis A., Stinson D.R.: Constructions and bounds for visual cryptography. In: ICALP 1996, pp. 416–428. Springer-Verlag, Berlin (1996).
Blundo C., De Santis A., Stinson D.R.: On the contrast in visual cryptography schemes. J. Cryptol. 12, 261–289 (1999)
Blundo C., De Santis A., Naor M.: Visual cryptography for grey-level images. Inf. Process. Lett. 75, 255–259 (2001)
Blundo C., D’Arco P., De Santis A., Stinson D.R.: Contrast optimal threshold visual cryptography schemes. SIAM J. Discrete Math. 16, 224–261 (2003)
Bose M., Mukerjee R.: Optimal (2, n)visual cryptographic schemes. Des. Codes Crypt. 40, 255–267 (2006)
Clatworthy W.H.: Tables of Two-Associate Partially Balanced Designs. National Bureau of Standards, Washington, DC (1973).
Dodge Y.: Statistical Data Analysis Based on the L1-Norm and Related Methods. Birkhauser, Basel (2002).
Droste S.: New Results on Visual Cryptography. In: CRYPTO 1996, pp. 401–415. Springer-Verlag, Berlin (1999).
Hofmeister T., Krause M., Simon H.U.: Contrast-optimal k out of n secret sharing schemes in visual cryptography. Theor. Comput. Sci. 240, 471–485 (2000)
Ishihara T., Koga H.: New constructions of the lattice-based visual secret sharing using mixture of colors. IEICE Trans. Fund. E85-A, 158–166 (2002)
Iwamoto M.: Weakly secure visual secret sharing schemes. In: Proc. ISITA 2008, pp. 42–47. Auckland (2008).
Koga H., Ueda E.: Proposal of an asymptotically contrast-ideal (t, n)-threshold visual secret sharing scheme. In: Proc. ISIT 2006, pp. 912–916. Seattle, (2006a).
Koga H., Ueda E.: Basic properties of the (t, n)-threshold visual secret sharing scheme with perfect reconstruction of black pixels. Des. Codes Crypt. 40, 81–102 (2006b)
Koga H., Iwamoto M., Yamamoto H.: An analytic construction of visual secret sharing scheme for color images. IEICE Trans. Fund. E84-A, 262–272 (2001)
Mukerjee R., Wu C.F.J.: A Modern Theory of Factorial Designs. Springer-Verlag, Berlin (2006)
Naor M., Shamir A.: Visual Cryptography. In: Eurocrypt 1994. pp. 1–12. Springer-Verlag, Berlin (1994).
Raghavarao D.: Constructions and Combinatorial Problems in Design of Experiments. Wiley, New York (1971)
Takeuchi K.: A table of difference sets generating balanced incomplete block designs. Rev. Internat. Statist. Inst. 30, 361–366 (1962)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. Wild.
Rights and permissions
About this article
Cite this article
Bose, M., Mukerjee, R. Optimal (k, n) visual cryptographic schemes for general k . Des. Codes Cryptogr. 55, 19–35 (2010). https://doi.org/10.1007/s10623-009-9327-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-009-9327-6
Keywords
- Block design
- Kronecker algebra
- L1-norm
- Pixel expansion
- Progressive optimality
- Relative contrast
- Unbalanced VCS