Skip to main content
Log in

Covering arrays from cyclotomy

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

For a prime power \({q \equiv 1 (mod{v})}\) , the q × q cyclotomic matrix, whose entries are the discrete logarithms modulo v of the entries in the addition table of \({\mathbb{F}_q}\) , has been shown using character theoretic arguments to produce an \({\varepsilon}\) -biased array, provided that q is large enough as a function of v and \({\varepsilon}\) . A suitable choice of \({\varepsilon}\) ensures that the array is a covering array of strength t when \({q > t^2 v^{4t}}\) . On the other hand, when v = 2, using a different character-theoretic argument the matrix has been shown to be a covering array of strength t when \({q > t^2 2^{2t-2}}\) . The restrictions on \({\varepsilon}\) -biased arrays are more severe than on covering arrays. This is exploited to prove that for all v ≥ 2, the matrix is a covering array of strength t whenever \({q > t^2 v^{2t}}\) , again using character theory. A number of constructions of covering arrays arise by developing and extending the cyclotomic matrix. For each construction, extensive computations for various choices of t and v are reported that determine the precise set of small primes for which the construction produces a covering array. As a consequence, many covering arrays are found when q is smaller than the bound \({t^2 v^{2t}}\) , and consequences for the existence of covering arrays reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ananchuen W., Caccetta L.: On the adjacency properties of Paley graphs. Networks 23(4), 227–236 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Azar J., Motwani R., Naor J.: Approximating probability distributions using small sample spaces. Combinatorica 18, 151–171 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blass A., Exoo G., Harary F.: Paley graphs satisfy all first-order adjacency axioms. J. Graph Theory 5(4), 435–439 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bollobás B.: Random Graphs. Academic Press Inc., London (1985).

  5. Chateauneuf M.A., Kreher D.L.: On the state of strength-three covering arrays. J. Combin. Des. 10(4), 217–238 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cohen M.B., Colbourn C.J., Ling A.C.H.: Constructing strength three covering arrays with augmented annealing. Discrete Math. 308, 2709–2722 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Colbourn C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58, 121–167 (2004)

    Google Scholar 

  8. Colbourn C.J.: Covering array tables. http://www.public.asu.edu/~ccolbou/src/tabby, 2005—present.

  9. Colbourn C.J.: Distributing hash families and covering arrays. J. Combin. Inf. Syst. Sci. (to appear).

  10. Colbourn C.J., Kéri G.: Covering arrays and existentially closed graphs. Lect. Notes Comput. Sci. 5557, 22–33 (2009)

    Article  Google Scholar 

  11. Colbourn C.J., Martirosyan S.S., van Trung T., Walker R.A. II: Roux-type constructions for covering arrays of strengths three and four. Des. Codes Cryptogr. 41, 33–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Forbes M., Lawrence J., Lei Y., Kacker R.N., Kuhn D.R.: Refining the in-parameter-order strategy for constructing covering arrays. J. Res. Nat. Inst. Stand. Tech. 113(5), 287–297 (2008)

    Google Scholar 

  13. Skipper D.E., Skipper D.E., Skipper D.E., , : t-covering arrays: upper bounds and Poisson approximations. Comb. Probab. Comput. 5, 105–118 (1996)

    Article  MATH  Google Scholar 

  14. Graham R.L., Spencer J.H.: A constructive solution to a tournament problem. Canad. Math. Bull. 14, 45–48 (1971)

    MATH  MathSciNet  Google Scholar 

  15. Hartman A.: Software and hardware testing using combinatorial covering suites. In: Golumbic M.C., Hartman I. B.-A. (eds.) Interdisciplinary Applications of Graph Theory, Combinatorics, and Algorithms, pp. 237–266. Springer, Norwell, MA (2005).

  16. Hedayat A.S., Sloane N.J.A., Stufken J.: Orthogonal Arrays. Springer, New York (1999)

    MATH  Google Scholar 

  17. Katona G.: Two applications (for search theory and truth functions) of Sperner type theorems. Periodica Math. 3, 19–26 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kleitman D., Spencer J.: Families of k-independent sets. Discrete Math. 6, 255–262 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  20. Martirosyan S.S., Colbourn C.J.: Recursive constructions of covering arrays. Bayreuth. Math. Schr. 74, 266–275 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Martirosyan S.S., van Trung T.: On t-covering arrays. Des. Codes Cryptogr. 32(1–3), 323–339 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nayeri P., Colbourn C.J., Konjevod G.: Randomized postoptimization of covering arrays. Lect. Notes Comput. Sci. 5874, 408–419 (2009)

    Article  Google Scholar 

  23. Schmidt W.M.: Equations over finite fields. An elementary approach. Lecture Notes in Mathematics, vol. 536. Springer, Berlin (1976).

  24. Sherwood G.B., Martirosyan S.S., Colbourn C.J.: Covering arrays of higher strength from permutation vectors. J. Combin. Des. 14(3), 202–213 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Colbourn.

Additional information

Communicated by Ron Mullin/Rainer Steinwandt.

To Spyros Magliveras on his Seventieth Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colbourn, C.J. Covering arrays from cyclotomy. Des. Codes Cryptogr. 55, 201–219 (2010). https://doi.org/10.1007/s10623-009-9333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9333-8

Keywords

Mathematics Subject Classification (2000)

Navigation