Skip to main content

On uniformly resolvable designs with block sizes 3 and 4

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A Uniformly Resolvable Design (URD) is a resolvable design in which each parallel class contains blocks of only one block size k, such a class is denoted k -pc and for a given k the number of k -pcs is denoted r k . In this paper we consider the case of block sizes 3 and 4. The cases r 3 = 1 and r 4 = 1 correspond to Resolvable Group Divisible Designs (RGDD). We prove that if a 4-RGDD of type h u exists then all admissible {3, 4}-URDs with 12hu points exist. In particular, this gives existence for URD with v ≡ 0 (mod 48) points. We also investigate the case of URDs with a fixed number of k -pc. In particular, we show that URDs with r 3 = 4 exist, and that those with r 3 = 7, 10 exist, with 11 and 12 possible exceptions respectively, this covers all cases with 1 < r 3 ≤ 10. Furthermore, we prove that URDs with r 4 = 7 exist and that those with r 4 = 9 exist, except when v = 12, 24 and possibly when v = 276. In addition, we prove that there exist 4-RGDDs of types 2 142, 2 346 and 6 54. Finally, we provide four {3,5}-URDs with 105 points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel R.J.R., Ge G., Greig M., Ling A.C.H. (2009) Further results on (V, {5, w *}, 1)-PBDs. Discrete Math. 309: 2323–2339

    Article  MATH  MathSciNet  Google Scholar 

  2. Abel R.J.R., Colbourn C.J., Dinitz J.H. (2006) Mutually orthogonal Latin squares (MOLS). In: Colbourn C.J., Dinitz J.H. (eds) The CRC handbook of combinatorial designs, 2 edn. CRC Press, Boca Raton, FL, pp 160–193

    Google Scholar 

  3. Beth T., Jungnickel D., Lenz H. (1999) Design theory, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  4. Colbourn, C.J., Dinitz, J.H. (eds) (2006) The CRC handbook of combinatorial designs, 2nd edn. CRC Press, Boca Raton FL

    Google Scholar 

  5. Danziger P. (1997) Uniform restricted resolvable designs with r = 3. Ars. Combin. 46: 161–176

    MATH  MathSciNet  Google Scholar 

  6. Danziger P., Mendelsohn E. (1996) Uniformly resolvable designs. JCMCC 21: 65–83

    MATH  MathSciNet  Google Scholar 

  7. Dinitz J.H., Ling A.C.H., Danziger P. (2009) Maximum uniformly resolvable designs with block sizes 2 and 4. Discrete Math. 309: 4716–4721

    Article  MATH  MathSciNet  Google Scholar 

  8. Furino S.C., Miao Y., Yin J.X. (1996) Frames and resolvable designs: uses, constructions and existence. CRC Press, Boca Raton, Fl

    MATH  Google Scholar 

  9. Ge G. (2001) Uniform frames with block size four and index one or three. J. Combin. Des. 9: 28–39

    Article  MATH  MathSciNet  Google Scholar 

  10. Ge G. (2002) Resolvable group divisible designs with block size four. Discrete Math. 243: 109–119

    Article  MATH  MathSciNet  Google Scholar 

  11. Ge G. (2006) Resolvable group divisible designs with block size four and index three. Discrete Math. 306: 52–65

    Article  MATH  MathSciNet  Google Scholar 

  12. Ge G., Lam C.W.H. (2003) Resolvable group divisible designs with block size four and group size six. Discrete Math. 268: 139–151

    Article  MATH  MathSciNet  Google Scholar 

  13. Ge G., Ling A.C.H. (2004) A survey on resolvable group divisible designs with block size four. Discrete Math. 279: 225–245

    Article  MATH  MathSciNet  Google Scholar 

  14. Ge G., Ling A.C.H. (2005) Asymptotic results on the existence of 4-RGDDs and uniform 5-GDDs. J. Combin. Des. 13: 222–237

    Article  MATH  MathSciNet  Google Scholar 

  15. Ge G., Ling A.C.H. (2004) Some more 5-GDDs and optimal (v, 5, 1)-packings. J. Combin. Des. 12: 132–141

    Article  MATH  MathSciNet  Google Scholar 

  16. Ge G., Lam C.W.H., Ling A.C.H. (2004) Some new uniform frames with block size four and index one or three. J. Combin. Des. 12: 112–122

    Article  MATH  MathSciNet  Google Scholar 

  17. Ge G., Lam C.W.H., Ling A.C.H., Shen H. (2005) Resolvable maximum packings with quadruples. Des. Codes Cryptogr. 35: 287–302

    Article  MATH  MathSciNet  Google Scholar 

  18. Ge G., Rees R.S. (2002) On group-divisible designs with block size four and group-type. Des. Codes Cryptogr. 27: 5–24

    Article  MATH  MathSciNet  Google Scholar 

  19. Hanani H., Ray-Chauduri D.K., Wilson R.M. (1972) On resolvable designs. Discrete Math. 3: 343–357

    Article  MATH  MathSciNet  Google Scholar 

  20. Lamken E.R., Mills W.H., Rees R.S. (1998) Resolvable minimum coverings with quadruples. J. Combin. Des. 6: 431–450

    Article  MATH  MathSciNet  Google Scholar 

  21. Rees R.S. (1987) Uniformly resolvable pairwise balanced designs with blocksizes two and three. J. Combin. Theory Ser. A 45: 207–225

    Article  MATH  MathSciNet  Google Scholar 

  22. Rees R.S. (1993) Two new direct product-type constructions for resolvable group-divisible designs. J. Combin. Des. 1: 15–26

    Article  MATH  MathSciNet  Google Scholar 

  23. Rees R.S. (2000) Group-divisible designs with block size k having k+1 groups for k = 4, 5. J. Combin. Des. 8: 363–386

    Article  MATH  MathSciNet  Google Scholar 

  24. Rees R.S., Stinson D.R. (1992) Frames with block size four. Can. J. Math. 44: 1030–1049

    MATH  MathSciNet  Google Scholar 

  25. Schuster E. (2009) Uniformly resolvable designs with index one and block sizes three and four—with three or five parallel classes of block size four. Discrete Math. 309: 2452–2465

    Article  MATH  MathSciNet  Google Scholar 

  26. Schuster E. (2009) Uniformly resolvable designs with index one, block sizes three and five and up to five parallel classes with blocks of size five. Discrete Math. 309: 4435–4442

    Article  MATH  MathSciNet  Google Scholar 

  27. Shen H. (1990) Constructions and uses of labeled resolvable designs. In: Wallis W.D. (eds) Combinatorial designs and applications. Marcel Dekker, New York, pp 97–107

    Google Scholar 

  28. Shen H. (1992) On the existence of nearly Kirkman systems. Ann. Discrete Math. 52: 511–518

    Article  Google Scholar 

  29. Shen H., Wang M. (1998) Existence of labeled resolvable block designs. Bull. Belg. Math. Soc. 5: 427–439

    MATH  MathSciNet  Google Scholar 

  30. Shen H., Shen J. (2002) Existence of resolvable group divisible designs with block size four I. Discrete Math. 254: 513–525

    Article  MATH  MathSciNet  Google Scholar 

  31. Sun X., Ge G. (2009) Resolvable group divisible designs with block size four and general index. Discrete Math. 309: 2982–2989

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhang X., Ge G. (2007) On the existence of partitionable skew Room frames. Discrete Math. 307: 2786–2807

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Schuster.

Additional information

Communicated by Charles J Colbourn.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 102 kb)

ESM 1 (PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, E., Ge, G. On uniformly resolvable designs with block sizes 3 and 4. Des. Codes Cryptogr. 57, 45–69 (2010). https://doi.org/10.1007/s10623-009-9348-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-009-9348-1

Keywords

Mathematics Subject Classification (2000)