Skip to main content
Log in

New results on optimal (v, 4, 2, 1) optical orthogonal codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We investigate further the existence question regarding optimal (v, 4, 2, 1) optical orthogonal codes begun in Momihara and Buratti (IEEE Trans Inform Theory 55:514–523, 2009). We give some non-existence results for infinitely many values of v ≡ ± 3 (mod 9) and several explicit constructions for infinite classes of perfect optical orthogonal codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel R.J.R., Buratti M.: Some progress on (v, 4, 1) difference families and optical orthogonal codes. J. Combin. Theory Ser. A 106, 59–75 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  2. Abel, R.J.R., Buratti, M.: Difference families. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn., pp. 392–409. Chapman & Hall/CRC Press, Boca Raton, FL (2006).

    Google Scholar 

  3. Alderson T.L., Mellinger K.E.: Families of optimal OOCs with λ = 2. IEEE Trans. Inform. Theory 54, 3722–3724 (2008).

    Article  MathSciNet  Google Scholar 

  4. Alderson T.L., Mellinger K.E.: Geometric constructions of optimal optical orthogonal codes. Adv. Math. Commun. 2, 451–467 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  5. Beth T., Jungnickel D., Lenz H.: Design Theory. Cambridge University Press, Cambridge (1999).

    Google Scholar 

  6. Bird I.C.M., Keedwell A.D.: Design and applications of optical orthogonal codes—a survey. Bull. Inst. Combin. Appl. 11, 21–44 (1994).

    MATH  MathSciNet  Google Scholar 

  7. Bonisoli A., Buratti M., Rinaldi G.: Sharply transitive decompositions of complete graphs into generalized Petersen graphs. Innov. Incidence Geom. 6(7), 95–109 (2009).

    MathSciNet  Google Scholar 

  8. Bose R.C.: On the construction of balanced incomplete block designs. Ann. Eugenics 9, 353–399 (1939).

    MathSciNet  Google Scholar 

  9. Brickell E.F., Wei V.: Optical orthogonal codes and cyclic block designs. Congr. Numer. 58, 175–182 (1987).

    MathSciNet  Google Scholar 

  10. Buratti M.: Recursive constructions for difference matrices and relative difference families. J. Combin. Des. 6, 165–182 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  11. Buratti M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  12. Buratti M., Pasotti A.: Combinatorial designs and the theorem of Weil on multiplicative character sums. Finite Fields Appl. 15, 332–344 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  13. Buratti M., Pasotti A.: Further progress on difference families with block size 4 or 5. Des. Codes Cryptogr. Published online (2009). doi:10.1007/s10623-009-9335-6.

  14. Chang Y.X., Ji L.: Optimal (4up,5,1) optical orthogonal codes. J. Combin. Des. 12, 135–151 (2004).

    MathSciNet  Google Scholar 

  15. Chen K., Zhu L.: Existence of (q,6,1) difference families with q a prime power. Des. Codes Cryptogr. 15, 167–173 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen K., Zhu L.: Existence of (q,k,1) difference families with q a prime power and k = 4, 5. J. Combin. Des. 7, 21–30 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  17. Chu W., Colbourn C.J.: Recursive constructions for optimal (n, 4, 2)-OOCs. J. Combin. Des. 12, 333–345 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  18. Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis and applications. IEEE Trans. Inform. Theory 35, 595–604 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  19. Colbourn C.J., Dinitz J.H., Stinson D.R.: Applications of combinatorial designs to communications, cryptography, and networking. In: Lamb J.D., Preece D.A. (eds.) Surveys in Combinatorics, pp. 37–100. Cambridge University Press, London (1999).

    Google Scholar 

  20. Feng T., Chang Y., Ji L.: Constructions for strictly cyclic 3-designs and applications to optimal OOCs with λ = 2. J. Combin. Theory Ser. A 115, 1527–1551 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  21. Ma S., Chang Y.: Constructions of optimal optical orthogonal codes with weight five. J. Combin. Des. 13, 54–69 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  22. Mishima M., Fu H.L., Uruno S.: Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3. Des. Codes Cryptogr. 52, 275–291 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  23. Momihara K.: On cyclic 2(k −1)-support (n, k)k−1 difference families. Finite Fields Appl. 15, 415–427 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  24. Momihara K.: Strong difference families, difference covers, and their applications for relative difference families. Des. Codes Cryptogr. 51, 253–273 (2009).

    Article  MathSciNet  Google Scholar 

  25. Momihara K., Buratti M.: Bounds and constructions of optimal (n, 4, 2, 1) Optical orthogonal codes. IEEE Trans. Inform. Theory 55, 514–523 (2009).

    Article  MathSciNet  Google Scholar 

  26. Wilson R.M.: Cyclotomic and difference families in elementary abelian groups. J. Number Theory 4, 17–47 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  27. Yang G.C., Fuja T.E.: Optical orthogonal codes with unequal auto- and cross-correlation constraints. IEEE Trans. Inform. Theory 41, 96–106 (1995).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Pasotti.

Additional information

Communicated by Victor A. Zinoviev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buratti, M., Momihara, K. & Pasotti, A. New results on optimal (v, 4, 2, 1) optical orthogonal codes. Des. Codes Cryptogr. 58, 89–109 (2011). https://doi.org/10.1007/s10623-010-9382-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9382-z

Keywords

Mathematics Subject Classification (2000)

Navigation