Skip to main content

Cyclic codes over \({{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this work, we focus on cyclic codes over the ring \({{{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}}\) , which is not a finite chain ring. We use ideas from group rings and works of AbuAlrub et.al. in (Des Codes Crypt 42:273–287, 2007) to characterize the ring \({({{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2})/(x^n-1)}\) and cyclic codes of odd length. Some good binary codes are obtained as the images of cyclic codes over \({{{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}}\) under two Gray maps that are defined. We also characterize the binary images of cyclic codes over \({{{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}}\) in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abualrub T.: Cyclic Codes over the ring of integers mod m. Thesis, University of Iowa (1998).

  2. Abualrub T., Siap I.: Cyclic Codes over the rings \({\mathbb{Z}_2+u\mathbb{Z}_2}\) and \({\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2}\) . Des. Codes Crypt. 42, 273–287 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bini G., Flamini F.: Finite Commutative Rings and Applications. Kluwer Academic Publishers, Norwell (2002)

    MATH  Google Scholar 

  4. Bonnecaze A., Udaya P.: Cyclic codes and self-dual codes over \({\mathbb{F}_2+u\mathbb{F}_2}\) . IEEE Trans. Inform. Theory 45, 1250–1255 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grassl M.: Bound on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 07 Jul 2009.

  6. Greferath M., O’Sullivan M.E.: On bounds for codes over Frobenius rings under homogeneous weights. J. Disc. Math. 289, 11–24 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hungerford T.W.: Algebra. Springer, New York (1974)

    MATH  Google Scholar 

  8. Hurley T.: Group rings and rings of matrices. Inter. J. Pure Appl. Math. 3, 319–335 (2006)

    MathSciNet  Google Scholar 

  9. Kanwar P., López-Permouth S.: Cyclic codes over the integers modulo p m. Finite Fields Appl. 3, 334–352 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Quang Dinh H., Lopez-Permóuth S.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50, 1728–1744 (2004)

    Article  MathSciNet  Google Scholar 

  11. Wolfmann J.: Negacyclic and cyclic codes over \({\mathbb{Z}_4}\) . IEEE Trans. Inform. Theory 45, 2527–2532 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yildiz B., Karadeniz S.: Linear codes over \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) . Des. Codes Crypt. 54, 61–81 (2010). (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahattin Yildiz.

Additional information

Communicated by T. Helleseth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildiz, B., Karadeniz, S. Cyclic codes over \({{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}\) . Des. Codes Cryptogr. 58, 221–234 (2011). https://doi.org/10.1007/s10623-010-9399-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9399-3

Keywords

Mathematics Subject Classification (2000)