Abstract
In this work, we focus on cyclic codes over the ring \({{{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}}\) , which is not a finite chain ring. We use ideas from group rings and works of AbuAlrub et.al. in (Des Codes Crypt 42:273–287, 2007) to characterize the ring \({({{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2})/(x^n-1)}\) and cyclic codes of odd length. Some good binary codes are obtained as the images of cyclic codes over \({{{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}}\) under two Gray maps that are defined. We also characterize the binary images of cyclic codes over \({{{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}}\) in general.
Similar content being viewed by others
References
Abualrub T.: Cyclic Codes over the ring of integers mod m. Thesis, University of Iowa (1998).
Abualrub T., Siap I.: Cyclic Codes over the rings \({\mathbb{Z}_2+u\mathbb{Z}_2}\) and \({\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2}\) . Des. Codes Crypt. 42, 273–287 (2007)
Bini G., Flamini F.: Finite Commutative Rings and Applications. Kluwer Academic Publishers, Norwell (2002)
Bonnecaze A., Udaya P.: Cyclic codes and self-dual codes over \({\mathbb{F}_2+u\mathbb{F}_2}\) . IEEE Trans. Inform. Theory 45, 1250–1255 (1999)
Grassl M.: Bound on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 07 Jul 2009.
Greferath M., O’Sullivan M.E.: On bounds for codes over Frobenius rings under homogeneous weights. J. Disc. Math. 289, 11–24 (2004)
Hungerford T.W.: Algebra. Springer, New York (1974)
Hurley T.: Group rings and rings of matrices. Inter. J. Pure Appl. Math. 3, 319–335 (2006)
Kanwar P., López-Permouth S.: Cyclic codes over the integers modulo p m. Finite Fields Appl. 3, 334–352 (1997)
Quang Dinh H., Lopez-Permóuth S.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory 50, 1728–1744 (2004)
Wolfmann J.: Negacyclic and cyclic codes over \({\mathbb{Z}_4}\) . IEEE Trans. Inform. Theory 45, 2527–2532 (1999)
Yildiz B., Karadeniz S.: Linear codes over \({\mathbb{F}_2+u\mathbb{F}_2+v\mathbb{F}_2+uv\mathbb{F}_2}\) . Des. Codes Crypt. 54, 61–81 (2010). (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by T. Helleseth.
Rights and permissions
About this article
Cite this article
Yildiz, B., Karadeniz, S. Cyclic codes over \({{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}\) . Des. Codes Cryptogr. 58, 221–234 (2011). https://doi.org/10.1007/s10623-010-9399-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-010-9399-3