Skip to main content
Log in

Towards the classification of rank 2 semifields 6-dimensional over their center

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Semifields 6-dimensional over the center \({\mathbb F_q}\), having at least one nucleus of order q 3 and at least one of the remaining nuclei of order q 2, are partitioned into non-empty mutually non-isotopic classes. Also, for each class a canonical form for the multiplication is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert A.A.: Finite division algebras and finite planes. Proc. Symp. Appl. Math. 10, 53–70 (1960)

    Google Scholar 

  2. Albert A.A.: Generalized twisted fields. Pac. J. Math. 11, 1–8 (1961)

    MATH  Google Scholar 

  3. Albert A.A.: Isotopy for generalized twisted fields. Anais Acad. Brasil. Ci. 33, 265–275 (1961)

    Google Scholar 

  4. Ball S., Blokhuis A., Lavrauw M.: On the classification of semifield flocks. Ad. Math. 180, 104–111 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloemen I., Thas J.A., Van Maldeghem H.: Translation ovoids of generalized quadrangles and hexagons. Geom. Dedicata 72, 19–62 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cardinali I., Polverino O., Trombetti R.: Semifield planes of order q 4 with kernel \({\mathbb {F}_{q^2}}\) and center \({\mathbb {F}_q}\). Eur. J. Comb. 27, 940–961 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dembowski P.: Finite Geometries. Springer Verlag, Berlin (1968)

    MATH  Google Scholar 

  8. Dempwolf U.: Semifield Planes of order 81. J. Geom. 89, 1–16 (2008)

    Article  MathSciNet  Google Scholar 

  9. Dickson L.E.: Linear algebras with associativity not assumed. Duke Math. J. 1, 113–125 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ebert G.L., Marino G., Polverino O., Trombetti R.: Infinite families of new semifields. Combinatorica 29(6), 637–663 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ebert G.L., Marino G., Polverino O., Trombetti R.: On the multiplication of some semifields of order q 6. Finite Fields Appl. 15, 160–173 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ebert G.L., Marino G., Polverino O., Trombetti R.: Semifields in Class \({{\mathcal F}_4^{(a)}}\) . Electron. J. Comb. 16, 1–20 (2009)

    MathSciNet  Google Scholar 

  13. Hughes D.R., Kleinfeld E.: Semi-nuclear extensions of Galois fields. Am. J. Math. 82, 389–392 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jha V., Johnson N.L.: An analog of the Albert-Knuth theorem on the orders of finite semifields, and a complete solution to Cofman’s subplane problem. Algebras Groups Geom. 6(1), 1–35 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Jha V., Johnson N.L.: Translation planes of large dimension admitting nonsolvable groups. J. Geom. 45(1–2), 87–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jha V., Johnson N.L.: Nuclear fusion in finite semifield planes. Adv. Geom. 4, 413–432 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson N.L., Jha V., Biliotti M.: Handbook of Finite Translation Planes, Pure and Applied Mathematics. Taylor Books (2007).

  18. Johnson N.L., Marino G., Polverino O., Trombetti R.: Semifields of order q 6 with left nucleus \({F_{q^3}}\) and center F q . Finite Fields Appl. 14(2), 456–469 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson N.L., Marino G., Polverino O., Trombetti R.: On a generalization of cyclic semifields. J. Algebraic Comb. 26(1), 1–34 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kleinfeld E.: Techinques for enumerating Veblen-Wedderburn systems. J. Assoc. Comput. Mach. 7, 330–337 (1960)

    MathSciNet  MATH  Google Scholar 

  21. Knuth D.E.: Finite semifields and projective planes. J. Algebra 2, 182–217 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lavrauw M., Marino G., Polverino O., Trombetti R.: \({\mathbb{F}_q}\)-pseudoreguli of PG(3, q 3) and scattered semifields of order q 6 (submitted).

  23. Lavrauw M., Polverino O.: Finite Semifields, Chapter to appear in Current research topics in Galois geometry. (Nova Collected Works).

  24. Lidl R., Niederreiter H.: Finite fields. Encyclopedia Math. Appl., Vol. 20, Addison-Wesley, Reading (Now distributed by Cambridge University Press) (1983).

  25. Lunardon G.: Translation ovoids. J. Geom. 76, 200–215 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Lunardon G.: Symplectic spreads and finite semifields. Designs, Codes, Cryptogr. 44(1–3), 39–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lunardon G., Marino G., Polverino O., Trombetti R.: Translation dual of a semifield. J. Comb. Theory Ser. A 115, 1321–1332 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lunardon G., Marino G., Polverino O., Trombetti R.: Symplectic semifield spreads of PG(5, q) and the veronese surface, Ricerche di Matematica, (to appear).

  29. Maduram D.M.: Transposed translation planes. Proc. Am. Math. Soc. 53, 265–270 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marino G., Polverino O., Trombetti R.: On \({{\mathbb F}_q}\)-linear sets of PG(3, q 3) and semifields. J. Comb. Theory Ser. A 114, 769–788 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Marino G., Polverino O., Trombetti R.: On semifields of type (q 2n, q n, q 2, q 2, q), n odd. Innov. Incidence Geom. 6, 209–227 (2009)

    MathSciNet  Google Scholar 

  32. Menichetti G.: On a Kaplansky conjecture concearning three-dimensional division algebras over a finite field. J. Algebra 47, 400–410 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. Menichetti G.: n-dimensional algebras over a field with a cyclic extension of defree n. Geom. Dedicata 63, 69–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Polverino O.: Linear sets in Finite Projective Spaces. Discret. Math. 310, 3096–3107 (2010). doi:10.1016/j.disc.2009.04.007

    Article  MathSciNet  MATH  Google Scholar 

  35. Rúa I.F., Combarro E.F., Ranilla J.: Classification of 64-element finite semifields. J. Algebra 322(11), 4011–4029 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Thas J.A.: Generalized quadrangles and flocks of cones. Eur. J. Combin. 8(4), 441–452 (1987)

    MathSciNet  MATH  Google Scholar 

  37. Walker R.J.: Determination of division algebras with 32 elements. In: Proceedings in Symposia of Applied Mathematics 75, 83–85 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Polverino.

Additional information

Communicated by Simeon Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marino, G., Polverino, O. & Trombetti, R. Towards the classification of rank 2 semifields 6-dimensional over their center. Des. Codes Cryptogr. 61, 11–29 (2011). https://doi.org/10.1007/s10623-010-9436-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-010-9436-2

Keywords

Mathematics Subject Classification (2000)