Abstract
This paper considers strong-RSA signature schemes built from the scheme of Cramer and Shoup. We present a basic scheme encompassing the main features of the Cramer-Shoup scheme. We analyze its security in both the random oracle model and the standard model. This helps us to spot potential security flaws. As a result, we show that a seemingly secure signature scheme (Tan in Int J Security Netw 1(3/4): 237–242, 2006) is universally forgeable under a known-message attack. In a second step, we discuss how to turn the basic scheme into a fully secure signature scheme. Doing so, we rediscover several known schemes (or slight variants thereof).
Similar content being viewed by others
References
Barić N., Pfitzmann B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) Advances in Cryptology-EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science., pp. 480–494. Springer-Verlag, Berlin (1997)
Bellare M., Rogaway P.: Random oracles are practical: a paradigm for designing efficient protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press (1993).
Bellare M., Rogaway P.: The exact security of digital signatures: how to sign with RSA and Rabin. In: Maurer, U. (ed.) Advances in Cryptology-EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pp. 399–416. Springer-Verlag, Berlin (1996)
Camenisch J., Lysyanskaya A.: A signature scheme with efficient protocols. In Security in Communication Networks (SCN 2002), volume 2676 of Lecture Notes in Computer Science, pp. 268–289. Springer-Verlag, Berlin (2002).
Canetti R., Goldreich O., Halevi S.: The random oracle methodology, revisited. In: 30th Annual ACM Symposium on Theory of Computing (STOC ’98), pp. 209–217 (1998).
Cao Z., Liu L.: A strong RSA signature scheme and its applications. In: 8th ACIS International Conference on Software Enginnering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, pp. 111–115. IEEE Computer Society (2007).
Catalano D., Gennaro R.: Cramer-Damgård signatures revisited: efficient flat-tree signatures based on factoring. In: Vaudenay, S. (ed.) Public Key Cryptography-PKC 2005, volume 3386 of Lecture Notes in Computer Science, pp. 313–327. Springer-Verlag, Berlin (2005)
Chevallier-Mames B., Joye M.: A practical and tightly secure signature scheme without hash function. In: Abe, M. (ed.) Topics in Cryptology-CT-RSA 2007, volume 4377 of Lecture Notes in Computer Science, pp. 339–356. Springer-Verlag, Berlin (2007)
Coron J.-S., Naccache D.: Security analysis of the Gennaro-Halevi-Rabin signature scheme. In: Preneel, B. (ed.) Advances in Cryptology-EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pp. 91–101. Springer-Verlag, Berlin (2000)
Cramer R., Damgård I.: New generation of secure and practical RSA-based signatures. In: Koblitz, N. (ed.) Advances in Cryptology-CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pp. 173–185. Springer-Verlag, Berlin (1996)
Cramer R., Shoup V.: Signature scheme based on the strong RSA assumption. ACM Transactions on Information and System Security, 3(3), 161–185, 2000. An earlier version appears in 6th ACM Conference on Computer and Communications Security, pp. 46–51, ACM Press (1999).
Diffie W., Hellman M.: New directions in cryptography. IEEE Trans Inform Theory IT 22(6), 644–654 (1976)
Dodis Y., Oliveira R., Pietrzak K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) Advances in Cryptology-CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pp. 449–466. Springer-Verlag, Berlin (2005)
Dwork C., Naor M.: An efficient existentially unforgeable signature scheme and its applications. In: Desmedt, Y. (ed.) Advances in Cryptology-CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pp. 234–246. Springer-Verlag, Berlin (1994)
Fischlin M.: The Cramer-Shoup strong-RSA signature scheme revisited. In: Desmedt, Y. (ed.) Public Key Cryptography-PKC 2003, volume 2567 of Lecture Notes in Computer Science, pp. 116–129. Springer-Verlag, Berlin (2003)
Fujisaki E., Okamoto T.: Statistical zero-knowledge protocols to prove modular polynomial equations. In: Kaliski, B. (ed.) Advances in Cryptology-CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pp. 16–30. Springer-Verlag, Berlin (1997)
Gennaro R., Halevi S., Rabin T.: Secure hash-and-sign signatures without the random oracle. In: Bellare, M. (ed.) Advances in Cryptology-EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pp. 123–139. Springer-Verlag, Berlin (1999)
Goldreich O.: Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In: Odlyzko, A. (ed.) Advances in Cryptology-CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pp. 104–110. Springer-Verlag, Berlin (1986)
Goldwasser S., Micali S., Rivest R.: A digital signature scheme secure against adaptive chosen message attacks. SIAM J. Comput. 17(2), 281–308 (1988)
Hofheinz D., Kiltz E.: Programmable hash functions and their applications. In: Wagner, D. (ed.) Advances in Cryptology-CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pp. 21–38. Springer-Verlag, Berlin (2008)
Joye M., Lin H.-M. et al.: On the TYS signature scheme. In: Gavrilova, M. (ed.) Computational Science and Its Applications-ICCSA 2006, volume 3982 of Lecture Notes in Computer Science, pp. 338–344. Springer-Verlag, Berlin (2006)
Katz J., Wang N.: Efficiency improvements for signature schemes with tight security reductions. In: 10th ACM Conference on Computer and Communications Security, pp. 155–164. ACM Press (2003).
Krawczyk H., Rabin T.: Chameleon signatures. In: Symposium on Network and Distributed System Security-NDSS 2000, pp. 143–154. Internet Society (2000).
Kurosawa K., Schmidt-Samoa K. et al.: New online/offline signature schemes without random oracles. In: Yung, M. (ed.) Public Key Cryptography-PKC 2006, volume 3958 of Lecture Notes in Computer Science, pp. 330–346. Springer-Verlag, Berlin (2006)
Menezes A., Smart N.: Security of signature schemes in a multi-user setting. Designs Codes Cryptogr. 33(3), 261–274 (2004)
Naccache D., Pointcheval D., Stern, J.: Twin signatures: an alternative to the hash-and-sign paradigm. In: 8th ACM Conference on Computer and Communications Security, pp. 20–27. ACM Press (2001).
Naor M., Yung M.: Universal one-way hash functions and their cryptographic applications. In: 21st Annual ACM Symposium on Theory of Computing (STOC ’89), pp. 33–43. ACM Press (1989).
Paillier P.: Impossibility proofs for RSA signatures in the standard model. In: Abe, M. (ed.) Topics in Cryptology-CT-RSA 2007, volume 4377 of Lecture Notes in Computer Science, pp. 31–48. Springer-Verlag, Berlin (2007)
Popescu C.: A modification of the Cramer-Shoup digital signature scheme. Studia Univ. Babeş-Bolyai Informatica XLVII(2), 27–35 (2002).
Rivest R.L., Shamir A., Adleman L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Tan C.H.: A secure signature scheme. In: Onoe, S., et al. (ed.) 2006 International Conference on Wireless Communications and Mobile Computing (IWCMC 2006), pp. 195–200. ACM Press (2006).
Tan C.H.: A new signature scheme without random oracles. Int. J. Secur. Netw. 1(3/4), 237–242 (2006)
Tan C.H., Yi X., Siew C.K.: A new provably secure signature scheme. IEICE Trans. Fundam. E86-A(10), 2633–2635 (2003)
Yu P., Tate S.R.: Online/offline signature schemes for devices with limited capabilities. In: Malkin, T. (ed.) Topics in Cryptology-CT-RSA 2008, volume 4964 of Lecture Notes in Computer Science, pp. 301–317. Springer-Verlag, Berlin (2008)
Zhu H.: New digital signature scheme attaining immunity against adaptive chosen message attack. Chin. J. Electron. 10(4), 484–486 (2001)
Zhu H.: A formal proof of Zhu’s signature scheme. Cryptology ePrint Archive, Report 2003/155 (2003).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Joye, M. How (Not) to design strong-RSA signatures. Des. Codes Cryptogr. 59, 169–182 (2011). https://doi.org/10.1007/s10623-010-9453-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-010-9453-1