Skip to main content
Log in

Round-efficient perfectly secure message transmission scheme against general adversary

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In the model of Perfectly Secure Message Transmission Schemes (PSMTs), there are n channels between a sender and a receiver, and they share no key. An infinitely powerful adversary A can corrupt   (observe and forge) the messages sent through some subset of n channels. For non-threshold adversaries called Q 2, Kumar et al. showed a many round PSMT (Ashwin Kumar et al. On perfectly secure communication over arbitrary networks. PODC 2002, pp. 193–202, 2002). In this paper, we show round efficient PSMTs against Q 2-adevrsaries. We first give a 3-round PSMT which runs in polynomial time in the size of the underlying linear secret sharing scheme. We next present a 2-round PSMT which is inefficient in general. (However, it is efficient for some special case.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal S., Cramer R., de Haan R.: Asymptotically Optimal Two-Round Perfectly Secure Message Transmission. CRYPTO 2006: pp. 394–408 (2006).

  2. Ashwin Kumar M.V.N., Goundan P.R., Srinathan K., Pandu Rangan C.: On perfectly secure cmmunication over arbitrary networks. PODC 2002, pp. 193–202 (2002).

  3. Ben-Or M., Goldwasser S., Wigderson A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symp. Theory of Computing, STOC, pp. 1–10, May 2–4 (1988).

  4. Cramer R., Damgård I., Maurer U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel B. (ed.) Advances in Cryptology—Eurocrypt 2000, Proceedings (Lecture Notes in Computer Science 1807), pp. 316–334. Springer, Bruges, Belgium, May 14–18 (2000).

  5. Desmedt Y., Wang Y., Burmester M.: A Complete Characterization of Tolerable Adversary Structures for Secure Point-to-Point Transmissions Without Feedback. ISAAC 2005. pp. 277–287 (2005).

  6. Dolev D., Dwork C., Waarts O., Yung M.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hirt M., Maurer U.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptology 13(1), 31–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ito M., Saio A., Nishizeki T.: Multiple assignment scheme for sharing secret. J. Cryptology 6(1), 15–20 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kurosawa K.: General error decodable secret sharing scheme and its application. IACR Cryptology ePrint Archive, Report 2009/263 (2009).

  10. Kurosawa K., Suzuki K.: Truly efficient 2-round perfectly secure message transmission scheme. IEEE Trans. Inform. Theory 55(1), 5223–5232 (2009)

    Article  MathSciNet  Google Scholar 

  11. Sayeed H.Md., Abu-Amara H.: Efficient perfectly secure message transmission in synchronous networks. Inf. Comput. 126(1), 53–61 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Srinathan K., Narayanan A., Pandu Rangan C.: Optimal Perfectly Secure Message Transmission. CRYPTO 2004: pp. 545–561 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Kurosawa.

Additional information

Communicated by H. Wang.

A preliminary version of this paper appeared in Cryptology ePrint Archive, Report 2010/450 (2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurosawa, K. Round-efficient perfectly secure message transmission scheme against general adversary. Des. Codes Cryptogr. 63, 199–207 (2012). https://doi.org/10.1007/s10623-011-9546-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9546-5

Keywords

Mathematics Subject Classification (2000)

Navigation