Skip to main content

A new product construction for partial difference sets

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Relatively few constructions are known of negative Latin square type Partial Difference Sets (PDSs), and most of the known constructions are in elementary abelian groups. We present a product construction that produces negative Latin square type PDSs, and we apply this product construction to generate examples in p-groups of exponent bigger than p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18(2), 97–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen Y.Q., Ray-Chaudhuri D.K., Xiang Q.: Constructions of partial difference sets and relative difference sets using galois rings II. J. Comb. Theory (A) 76(2), 179–196 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen Y.Q., Polhill J.: Partial difference sets and amorphic group schemes from pseudo-quadratic bent functions, Preprint.

  4. Davis J.A.: Partial difference sets in p-groups. Arch. Math. 63, 103–110 (1994)

    Article  MATH  Google Scholar 

  5. Davis J.A., Xiang Q.: Negative Latin square type partial difference sets in nonelementary abelian 2-groups. J. Lond. Math. Soc. 70(2), 125–141 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davis J.A., Xiang Q.: Amorphic association schemes with negative Latin square-type graphs. Finite Fields Appl. 12, 595–612 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Denniston L.E.: Some maximal arcs in finite projective planes. J. Comb. Theory 6, 317–319 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hou X.-D.: New partial difference in p-groups. J. Comb. Des. 10, 396–402 (2002)

    Article  Google Scholar 

  9. Leung K.H., Ma S.L.: Constructions of partial difference sets and relative difference sets on p-groups. Bull. Lond. Math. Soc. 22, 533–539 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leung K.H., Ma S.L.: Partial difference sets with Paley parameters. Bull. Lond. Math. Soc. 27, 553–564 (1995)

    Article  MathSciNet  Google Scholar 

  11. Ma S.L.: A Survey of partial difference sets. Des. Codes Cryptogr. 4, 221–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Polhill J.: Constructions of nested partial difference sets with galois rings. Des. Codes Cryptogr. 25, 299–309 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Polhill J.: New negative Latin square type partial difference sets in non-elementary abelian 2-groups and 3-groups. Des. Codes Cryptogr. 46, 365–377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Polhill J.: Negative Latin square type partial difference sets and amorphic association schemes with galois rings. J. Comb. Des. 17, 266–282 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Smith K., Stuckey J.: Using rational idempotents to construct a PDS in C 8 ×  C 8, Preprint.

  16. Turyn R.J.: Character sums and difference sets. Pac. J. Math. 15, 319–346 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. van Dam E.R.: Strongly regular decompositions of the complete graph. J. Algebraic Comb. 17, 181–201 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Davis.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polhill, J., Davis, J.A. & Smith, K. A new product construction for partial difference sets. Des. Codes Cryptogr. 68, 155–161 (2013). https://doi.org/10.1007/s10623-012-9616-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9616-3

Keywords

Mathematics Subject Classification (2000)