Skip to main content
Log in

New invariants for incidence structures

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We exhibit a new, surprisingly tight, connection between incidence structures, linear codes, and Galois geometry. To this end, we introduce new invariants for finite simple incidence structures \({\mathcal{D}}\), which admit both an algebraic and a geometric description. More precisely, we will associate one invariant for the isomorphism class of \({\mathcal{D}}\) with each prime power q. On the one hand, we consider incidence matrices M with entries from GF(q t) for the complementary incidence structure \({\mathcal{D}^*}\), where t may be any positive integer; the associated codes C = C(M) spanned by M over GF(q t); and the corresponding trace codes Tr(C(M)) over GF(q). The new invariant, namely the q-dimension \({{\rm dim}_q(\mathcal{D}^*)}\) of \({\mathcal{D}^*}\), is defined to be the smallest dimension over all trace codes which may be obtained in this manner. This modifies and generalizes the q-dimension of a design as introduced in Tonchev (Des Codes Cryptogr 17:121–128, 1999). On the other hand, we consider embeddings of \({\mathcal{D}}\) into projective geometries \({\Pi = PG(n, q)}\), where an embedding means identifying the points of \({\mathcal{D}}\) with a point set V in \({\Pi}\) in such a way that every block of \({\mathcal{D}}\) is induced as the intersection of V with a suitable subspace of \({\Pi}\). Our main result shows that the q-dimension of \({\mathcal{D}^*}\) always coincides with the smallest value of N for which \({\mathcal{D}}\) may be embedded into the (N − 1)-dimensional projective geometry PG(N − 1, q). We also give a necessary and sufficient condition when actually an embedding into the affine geometry AG(N − 1, q) is possible. Several examples and applications will be discussed: designs with classical parameters, some Steiner designs, and some configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul-Elah M.S., Al-Dhahir M.W., Jungnickel D.: 83 in PG(2, q). Arch. Math. 49, 141–150 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  3. Beutelspacher A., Rosenbaum U.: Projective Geometry, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Bierbrauer J.: Introduction to Coding Theory. CRC, Boca Raton (2005)

    MATH  Google Scholar 

  5. Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clark D., Jungnickel D., Tonchev V.D.: Affine geometry designs, polarities, and Hamada’s conjecture. J. Comb. Theory A. 118, 231–239 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clark D., Jungnickel D., Tonchev V.D.: Correction to: “Exponential bounds on the number of designs with affine parameters”. J. Comb. Des. 19, 156–166 (2011b)

    Article  MathSciNet  MATH  Google Scholar 

  8. Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  9. Coxeter H.S.M.: Twelve points in PG(5, 3) with 95040 self-transformations. Philos. Trans. R. Soc. Lond. A. 247, 279–293 (1958)

    MathSciNet  MATH  Google Scholar 

  10. Delsarte P.: Weights of linear codes and strongly regular normed spaces. Discret. Math. 3, 47–64 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dembowski P.: Finite Geometries. Springer, Berlin (1968)

    Book  MATH  Google Scholar 

  12. Doyen J., Hubaut X., Vandensavel M.: Ranks of incidence matrices of Steiner triple systems. Math. Z. 163, 251–259 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghinelli D., Jungnickel D., Metsch K.: Remarks on polarity designs (Submitted).

  14. Giorgetti M., Previtali A.: Galois invariance, trace codes and subfield subcodes. Finite Fields Appl. 16, 96–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goethals J.M., Delsarte P.: On a class of majority-logic decodable cyclic codes. IEEE Trans. Inf. Theory 14, 182–188 (1968)

    Article  MathSciNet  Google Scholar 

  16. Grünbaum B.: Configurations of points and lines. Graduate Studies in Mathematics 103. American Mathematical Society, Providence (2009).

  17. Hamada N.: On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes. Hiroshima Math. J. 3, 154–226 (1973)

    MathSciNet  Google Scholar 

  18. Hamada N., Ohmori H.: On the BIB-design having the minimum p-rank. J. Comb. Theory A. 18, 131–140 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harada M., Lam C.W.H., Tonchev V.D.: Symmetric (4,4)-nets and generalized Hadamard matrices over groups of order 4. Des. Codes Cryptogr. 34, 71–87 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hirschfeld J.W.P.H.: Projective spaces of square size. Simon Stevin 65, 319–329 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Jungnickel D.: Recent results on designs with classical parameters. J. Geom. 101, 137–155 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jungnickel D., Tonchev V.D.: Polarities, quasi-symmetric designs, and Hamada’s conjecture. Des. Codes Cryptogr. 51, 131–140 (2009)

    Article  MathSciNet  Google Scholar 

  23. Jungnickel D., Tonchev V.D.: The number of designs with geometric parameters grows exponentially. Des. Codes Cryptogr. 55, 131–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jungnickel D., Tonchev V.D.: A Hamada type characterization of the classical geometric designs. Des. Codes Cryptogr. doi:10.1007/s10623-011-9580-3 (2011).

  25. Jurrius R.: Weight enumeration of codes from finite spaces. Des. Codes Cryptogr. doi:10.1007/s10623-011-9557-2 (2011).

  26. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

  27. Rigby J.F.: Affine subplanes of finite projective planes. Can. J. Math. 17, 977–1009 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tallini G.: On caps of kind s in a Galois r-dimensional space. Acta Arith. 7, 19–28 (1961)

    MathSciNet  MATH  Google Scholar 

  29. Teirlinck L.: On projective and affine hyperplanes. J. Comb. Theory A. 28, 290–306 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tonchev V.D.: Quasi-symmetric 2-(31, 7, 7)-designs and a revision of Hamada’s conjecture. J. Comb. Theory A. 42, 104–110 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tonchev V.D.: A note on MDS codes, n-arcs and complete designs. Des. Codes Cryptogr. 29, 247–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tonchev V.D.: Finite geometry, designs, codes, and Hamada’s conjecture. In: Crnković, D., Tonchev, V. (eds.) Information Security, Coding Theory and Related Combinatorics, pp. 437–448. IOS Press, Amsterdam (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jungnickel.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungnickel, D., Tonchev, V.D. New invariants for incidence structures. Des. Codes Cryptogr. 68, 163–177 (2013). https://doi.org/10.1007/s10623-012-9636-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9636-z

Keywords

Mathematics Subject Classification (2010)

Navigation