Skip to main content
Log in

Mutually orthogonal Latin squares based on general linear groups

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Given a finite group G, how many squares are possible in a set of mutually orthogonal Latin squares based on G? This is a question that has been answered for a few classes of groups only, and for no nonsoluble group. For a nonsoluble group G, we know that there exists a pair of orthogonal Latin squares based on G. We can improve on this lower bound when G is one of GL(2, q) or SL(2, q), q a power of 2, q ≠ 2, or is obtained from these groups using quotient group constructions. For nonsoluble groups, that is the extent of our knowledge. We will extend these results by deriving new lower bounds for the number of squares in a set of mutually orthogonal Latin squares based on the group GL(n, q), q a power of 2, q ≠ 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman P.T.: A remark on infinite groups. Am. Math. Monthly 57, 623–624 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beth T., Jungnickel D., Lenz H.: Design theory, 2nd ed. Cambridge University Press, Cambridge (1999).

  3. Colbourn C.J., Dinitz J.H. (eds.): Handbook of Combinatorial Designs, 2nd ed. Chapman and Hall/CRC, Boca Raton (2007).

  4. Dalla Volta F., Gavioli N.: Complete mappings in some linear and projective groups. Arch. Math. (Basel) 61(2), 111–118 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dénes J., Keedwell A.D.: Latin Squares and Their Applications. Akadémiai Kiadó, Budapest (1974).

  6. Dénes J., Keedwell A.D.: Latin squares: new developments in the theory and applications. Annals of Discrete Mathematics, vol. 46. North Holland, New York (1991).

  7. Evans A.B.: Mutually orthogonal Latin squares based on linear groups. In: Jungnickel, D. et al. (eds) Coding Theory, Design Theory, Group Theory (Burlington, VT, 1990), pp. 171–175. . Wiley-Interscience, New York (1993).

  8. Evans A.B.: Orthomorphism graphs of groups. Lecture Notes in Mathematics, vol. 1535. Springer, Berlin (1992).

  9. Evans A.B.: On orthogonal orthomorphisms of cyclic and non-abelian groups, vol. II, J. Combin. Des. 15(3), 195–209 (2007)

    Article  MATH  Google Scholar 

  10. Evans A.B.: The admissibility of sporadic simple groups. J. Algebra 321, 105–116 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ge G.: On (g, 4;1)–difference matrices. Discret. Math. 301, 164–174 (2005)

    Article  MATH  Google Scholar 

  12. Hall M., Paige L.J.: Complete mappings of finite groups. Pacific J. Math. 5, 541–549 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jungnickel D.: On difference matrices and regular Latin squares. Abh. Math. Sem. Univ. Hamburg 50, 219–231 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jungnickel D.: Einige neue Differenzenmatrizen. Mitt. Math. Sem. Giessen 149, 47–57 (1981)

    MathSciNet  Google Scholar 

  15. Michler G.: Theory of Finite Simple Groups. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  16. Paige L.J.: Neofields. Duke Math. J. 16, 39–60 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  17. Quinn K.A.S.: Difference matrices and orthomorphisms over non-abelian groups. Ars Combinatoria 52, 289–295 (1999)

    MATH  MathSciNet  Google Scholar 

  18. Wilcox S.: Reduction of the Hall-Paige conjecture to sporadic simple groups. J. Algebra 321, 1407–1428 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony B. Evans.

Additional information

Communicated by J. D. Key.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, A.B. Mutually orthogonal Latin squares based on general linear groups. Des. Codes Cryptogr. 71, 479–492 (2014). https://doi.org/10.1007/s10623-012-9752-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9752-9

Keywords

Mathematics Subject Classification (2010)

Navigation