Skip to main content
Log in

A new class of near-optimal partial Fourier codebooks from an almost difference set

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

An (N, K) codebook is a set of N unit-norm code vectors in a K-dimensional vector space. Also known as a frame, it has many applications in communications, signal processing, and quantum computing. In the applications, it is required that the maximum magnitude of inner products between a pair of distinct code vectors should meet the Welch bound equality, strictly or asymptotically. In this paper, a new class of (N, K) partial Fourier codebooks is constructed from an almost difference set, where N = K 2 − 1 and K = p k for a prime p and a positive integer k. It turns out that the almost difference set is equivalent to a modular Golomb ruler, and is obtained by a set of elements decimated from an N-ary Sidelnikov sequence of length N with decimation factor K − 1. In the codebook, the magnitude of inner products between distinct code vectors is two-valued, and its maximum nearly achieves the Welch bound equality, which leads to a near-optimal codebook or nearly equiangular tight frame. Equivalent to a K × N partial Fourier matrix with near-optimal coherence, the new partial Fourier codebook can find its potential applications in deterministic compressed sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alltop W.: Complex sequences with low periodic correlations. IEEE Trans. Inform. Theory 26(3), 350–354 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Applebaum L., Howard S.D., Searle S., Calderbank R.: Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Appl. Comput. Harmon. Anal. 26, 283–290 (2008)

    Article  MathSciNet  Google Scholar 

  3. Arasu K.T., Ding C., Helleseth T., Kumar P.V., Martinsen H.: Almost difference sets and their sequences with optimal autocorrelation. IEEE Trans. Inform. Theory 47(7), 2934–2943 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baumert L.D.: Cyclic Difference Sets. Lecture Notes in Mathematics. Springer, Berlin (1971)

    MATH  Google Scholar 

  5. Bose R.C.: An affine analogue of Singers theorem. J. Indian Math. Soc. 6, 1–15 (1942)

    MATH  MathSciNet  Google Scholar 

  6. Bose R.C., Chowla S.: Theorems in the additive theory of numbers. Comment. Math. Helv. 37, 141–147 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  7. Calderbank R., Howard S., Jafarpour S.: Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE J. Select. Topics Signal Process. 4(2), 358–374 (2010)

    Article  Google Scholar 

  8. Candes E.J., Wakin M.B.: An introduction to compressive sampling. IEEE Sig. Proc. Mag. 25, 21–30 (2008)

    Article  Google Scholar 

  9. Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs, 2nd edn. Chapman & Hall/CRC, London.

  10. Conway J.H., Harding R.H., Sloane N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5(2), 139–159 (1996)

    Article  MATH  Google Scholar 

  11. Davis J.: Almost difference sets and reversible difference sets. Arch. Math. 59, 595–602 (1992)

    Article  MATH  Google Scholar 

  12. Dillon J.F., Dobbertin H.: New cyclic difference sets with Singer parameters. Finite Fields Their Appl. 10, 342–389 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ding C.: Complex codebooks from combinatorial designs. IEEE Trans. Inform. Theory 52(9), 4229–4235 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ding C., Feng T.: A generic construction of complex codebooks meeting the Welch bound. IEEE Trans. Inform. Theory 53(11), 4245–4250 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ding C., Feng T.: Codebooks from almost difference sets. Des. Codes Cryptogr. 46, 113–126 (2008)

    Article  MathSciNet  Google Scholar 

  16. Donoho D.L., Elad M.: Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization. Proc. Natl. Acad. Sci. 100, 2197–2202 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Drakakis K.: A review of the available construction methods for Golomb rulers. Adv. Math. Commun. 3(3), 235–250 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fickus M., Mixon D.G., Tremain J.C.: Steiner equiangular tight frames. Linear Algebra Appl. 436(5), 1014–1027 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Golomb S.W., Gong G.: Signal Design for Good Correlation—for Wireless Communication, Cryptography and Radar. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  20. Kovacević J., Chebira A.: An introduction to frames, vol. 2. In: Foundations and Trends in Signal Processing. Now Publishers, Boston (2008).

  21. Lempel A., Cohn M., Eastman W.: A class of balanced binary sequences with optimal autocorrelation property. IEEE Trans. Inform. Theory 1, 38–42 (1977)

    Article  MathSciNet  Google Scholar 

  22. Massey J.L., Mittelholzer T.: Welch’s bound and sequence sets for code-division multiple-access systems. In: Capocelli R., Santis A.D., Vaccaro U. (eds.) Sequences II: Methods in Communication, Security, and Computer Science, pp. 63–78. Springer, New York (1993).

  23. Renes J.M., Blume-Kohout R., Scot A., Caves C.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45(6), 2117–2180 (2004)

    Article  Google Scholar 

  24. Sarwate D.V.: Meeting the Welch bound with equality. In: Ding C., Helleseth T., Niederreiter H. (eds.) Sequences and Their Applications, pp. 79–102. Springer, London (1998).

  25. Sidelnikov V.M.: Some k-valued pseudo-random sequences and nearly equidistant codes. Probl. Inform. Transm. 5(1), 12–16 (1969)

    MathSciNet  Google Scholar 

  26. Strohmer T., Heath R.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Swanson C.N.: Planar cyclic difference packings. J. Combin. Des. 8(6), 426–434 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Welch L.R.: Lower bounds on the maximum cross correlation of the signals. IEEE Trans. Inform. Theory IT-20, 397–399 (1974)

    Article  MathSciNet  Google Scholar 

  29. Xia P., Zhou S., Giannakis G.B.: Achieving the Welch bound with difference sets. IEEE Trans. Inform. Theory 51(5), 1900–1907 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yu N.Y.: A construction of codebooks associated with binary sequences. IEEE Trans. Inform. Theory. 58(8), 5522–5533 (2012)

    Article  MathSciNet  Google Scholar 

  31. Zhang A., Feng K.: Construction of cyclotomic codebooks nearly meeting the Welch bound. Des. Codes Cryptogr. 63, 209–224 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhang A., Feng K.: Two classes of codebooks nearly meeting the Welch bound. IEEE Trans. Inform. Theory 58(4), 2507–2511 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Yul Yu.

Additional information

Communicated by T. Helleseth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, N.Y., Feng, K. & Zhang, A. A new class of near-optimal partial Fourier codebooks from an almost difference set. Des. Codes Cryptogr. 71, 493–501 (2014). https://doi.org/10.1007/s10623-012-9753-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9753-8

Keywords

Mathematics Subject Classification (2000)

Navigation