Abstract
We give a geometric description of binary quantum stabilizer codes. In the case of distance \(d=4\) this leads to the notion of a quaternary quantum cap. We describe several recursive constructions for quantum caps, determine the quantum caps in \(PG(3,4)\) and the cardinalities of quantum caps in \(PG(4,4).\)
Similar content being viewed by others
References
Bartoli D., Bierbrauer J., Marcugini S., Pambianco F.: Geometric Constructions of Quantum Codes, Error-Correcting Codes, Finite Geometries and Cryptography, Contemporary Mathematics, vol. 523, pp. 149–154. American Mathematical Society, Providence (2010).
Bartoli D., Davydov A.A., Marcugini S., Pambianco F.: The minimum order of complete caps in \(PG(4,4)\). Advanc. Math. Commun. 5, 37–40 (2011).
Bartoli D., Faina G., Marcugini S., Pambianco F.: New quantum caps in \(PG(4,4)\). J. Combin. Des. 20, 448–466 (2012).
Bierbrauer J.: Introduction to Coding Theory. Chapman and Hall, CRC Press, Boca Raton (2004).
Bierbrauer J., Edel Y.: Quantum twisted codes. J. Combin. Des. 8, 174–188 (2000).
Bierbrauer J., Edel Y.: Large caps in projective Galois spaces. In: de Beule J., Storme L. (eds.) Current Research Topics in Galois Geometry, pp. 81–94. Nova Science Publishers, New York (2010).
Bierbrauer J., Faina G., Giulietti M., Marcugini S., Pambianco F.: The geometry of quantum codes. Innov. Incidence Geom. 6, 53–71 (2009).
Calderbank A.R., Rains E.M., Shor P.M., Sloane N.J.A.: Quantum error-correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44, 1369–1387 (1998).
Edel Y., Bierbrauer J.: \(41\) is the largest size of a cap in \(PG(4,4),\). Des. Codes Cryptogr. 16, 151–160 (1999).
Edel Y., Bierbrauer J.: The largest cap in \(AG(4,4)\) and its uniqueness. Des. Codes Cryptogr. 29, 99–104 (2003).
Glynn D.G.: A 126-cap in \(PG(5,4)\) and its corresponding \([126,6,88]\)-code. Util. Math. 55, 201–210 (1999).
Glynn D.G., Gulliver T.A., Maks J.G., Gupta M.K.: The geometry of additive quantum codes. Manuscript (2006). http://www.maths.adelaide.edu.au/rey.casse/DavidGlynn/QMonoDraft.pdf
Grassl M.: http://www.codetables.de.
Hughes D.R., Piper F.C.: Design Theory. Cambridge University Press, Cambridge (1985).
Hirschfeld J.W.P.: Finite Projective Spaces in Three Dimensions. Clarendon Press, Oxford (1985).
Tallini G.: Calotte complete di \(S_{4, q}\) contenenti due quadriche ellittiche quali sezioni iperpiane. Rend. Mat. e Appl. 23, 108–123 (1964).
Tonchev V.: Quantum codes from caps. Discret. Math. 308, 6368–6372 (2008).
Yu S., Bierbrauer J., Dong Y., Chen Q., Oh C.H.: All the stabilizer codes of distance \(3\). IEEE Trans. Inf. Theory to appear.
Acknowledgments
The research of Y. Edel takes place within the project “Linear codes and cryptography” of the Research Foundation—Flanders (FWO) (Project nr. G.0317.06), and is supported by the Interuniversitary Attraction Poles Programme—Belgian State—Belgian Science Policy: project P6/26-Bcrypt. The research of J. Bierbrauer was partially supported by NSA Grant H98230-10-1-0159. This work was also partially supported by the Italian Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) and by the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni (GNSAGA).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by S. Ball.
Rights and permissions
About this article
Cite this article
Bierbrauer, J., Bartoli, D., Faina, G. et al. The structure of quaternary quantum caps. Des. Codes Cryptogr. 72, 733–747 (2014). https://doi.org/10.1007/s10623-013-9796-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-013-9796-5
Keywords
- Quantum cap
- Quaternary code
- Quantum stabilizer code
- Symplectic geometry
- Projective space
- Trace
- Hyperoval
- Elliptic quadric