Skip to main content
Log in

On generator matrices and parity check matrices of generalized integer codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Generalized integer codes are defined as codes over rings of integers modulo \(n\) in which individual code symbols generally have different moduli. In this paper, we use a certain type of matrix identities to derive a necessary and sufficient condition for integer matrices to be equal to the generator matrices of generalized integer codes. Moreover, it is shown that the parity check matrix is generated from this matrix identity of the generator matrix. We also show the close connection between the listing of a certain type of integer codes and Hecke rings. Finally, an efficient algorithm that enumerates theoretically all of the generator matrices of generalized integer codes is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhaintwal M., Wasan S.K.: On quasi-cyclic codes over \(Z_q\). Appl. Algebra Eng. Commun. Comput. 20(5–6), 459–480 (2009).

    Google Scholar 

  2. Blake I.: Codes over certain rings. Inf. Control 20(4), 396–404 (1972).

    Google Scholar 

  3. Blake I.: Codes over integer residue rings. Inf. Control 29(4), 295–300 (1975).

    Google Scholar 

  4. Calderbank A.R., Sloane N.J.A.: Modular and \(p\)-adic cyclic codes. Des. Codes Cryptogr. 6(1), 21–35 (1995).

  5. Cao Y.: Structural properties and enumeration of 1-generator generalized quasi-cyclic codes. Des. Codes Cryptogr. 60(1), 67–69 (2010).

    Google Scholar 

  6. Chen L., Xu J., Djurdjevic I., Lin S.: Near-Shannon-limit quasi-cyclic low-density parity-check codes. IEEE Trans. Commun. 52(7), 1038–1042 (2004).

    Google Scholar 

  7. Esmaeili M., Yari S.: Generalized quasi-cyclic codes: structural properties and code construction. Appl. Algebra Eng. Commun. Comput. 20(2), 159–173 (2009).

    Google Scholar 

  8. Fossorier M.P.C.: Quasi-cyclic low density parity check codes from circulant permutation matrices. IEEE Trans. Inf. Theory 50(8), 1788–1793 (2004).

    Google Scholar 

  9. Han Vinck A.J., Morita H.: Codes over the ring of integers modulo m. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E81-A(10), 2013–2018 (1998).

  10. Heegard C., Little J., Saints K.: Systematic encoding via Gröbner bases for a class of algebraic geometric Goppa codes. IEEE Trans. Inf. Theory 41(6), 1752–1761 (1995).

    Google Scholar 

  11. Huffman W.C.: On the classification and enumeration of self-dual codes. Finite Fields Appl. 11(3), 451–490 (2005).

    Google Scholar 

  12. Kamiya N.: High-rate quasi-cyclic low-density parity-check codes derived from finite affine planes. IEEE Trans. Inf. Theory 53(4), 1444–1459 (2007).

    Google Scholar 

  13. Kamiya N., Fossorier M.P.C.: Quasi-cyclic codes from a finite affine plane. Des. Codes Cryptogr. 38(3), 311–329 (2006).

    Google Scholar 

  14. Kostadinov H., Morita H., Manev N.: Integer codes correcting single errors of specific types \((\pm e_1,\pm e_2,...,\pm e_s)\). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E86-A(7), 1843–1849 (2003).

  15. Kostadinov H., Morita H., Manev N.: Derivation on bit error probability of coded QAM using integer codes. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87-A(12), 3397–3403 (2004).

    Google Scholar 

  16. Kostadinov H., Morita H., Iijima N., Han Vinck A.J., Manev N.: Soft decoding of integer codes and their application to coded modulation. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E93-A(7), 1363–1370 (2010).

    Google Scholar 

  17. Kou Y., Lin S., Fossorier M.P.C.: Low density parity check codes based on finite geometries: a rediscovery and new results. IEEE Trans. Inf. Theory 47(7), 2711–2761 (2001).

    Google Scholar 

  18. Lally K., Fitzpatrick P.: Algebraic structure of quasi-cyclic codes. Discret. Appl. Math. 111(1–2), 157–175 (2001).

    Google Scholar 

  19. Lin S., Costello D.J.: Error Control Coding: Fundamentals and Applications, 2nd edn. Prentice-Hall, Englewood Cliffs (2004).

  20. Ling S., Solé P.: On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory 47(7), 2751–2760 (2001).

    Google Scholar 

  21. Ling S., Solé P.: On the algebraic structure of quasi-cyclic codes II: chain rings. Des. Codes Cryptogr. 30(1), 113–130 (2003).

    Google Scholar 

  22. Ling S., Solé P.: On the algebraic structure of quasi-cyclic codes III: generator theory. IEEE Trans. Inf. Theory 51(7), 2692–2700 (2005).

    Google Scholar 

  23. Ling S., Niederreiter H., Solé P.: On the algebraic structure of quasi-cyclic codes IV: repeated roots. Des. Codes Cryptogr. 38(3), 337–361 (2006).

    Google Scholar 

  24. MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes, 9th edn. Elsevier, North Holland (1988).

  25. Matsui H.: On polynomial generator matrices of generalized quasi-cyclic codes. In: 6th Asia-Europe Workshop on Information Theory, Ishigaki Island, Okinawa, Japan, 22–24 Oct 2010.

  26. Nakamura K.: A class of error-correcting codes for DPSK channels. In: IEEE International Conference on Communications, Boston, MA, June 10–14 1979, pp. 45.4.1–45.4.5.

  27. Nebe G., Rains E.M., Sloane N.J.A.: Self-Dual Codes and Invariant Theory. Springer, Berlin (2006).

  28. Roth R.M.: Introduction to Coding Theory. Cambridge University Press, Cambridge (2005).

  29. Séguin G.E.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 50(8), 1745–1753 (2004).

    Google Scholar 

  30. Serre J.-P.: A Course in Arithmetic. Springer, Berlin (1973).

  31. Shimura G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton (1971).

  32. Siap I., Kulhan N.: The structure of generalized quasi-cyclic codes. Appl. Math. E-Notes 5, 24–30 (2005).

    Google Scholar 

  33. Solé P. (ed.): Codes over Rings. In: Proceedings of the Cimpa Summer School, Ankara, Turkey, 18–29 Aug 2008.

  34. Spiegel E.: Codes over \(\text{ Z }_m\). Inf. Control 35(1), 48–51 (1977).

  35. Tang H., Xu J., Lin S., Abdel-Ghaffar K.A.S.: Codes on finite geometries. IEEE Trans. Inf. Theory 51(2), 572–596 (2005).

    Google Scholar 

  36. Van V.T., Matsui H., Mita S.: Computation of Gröbner basis for systematic encoding of generalized quasi-cyclic codes. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92-A(9), 2345–2359 (2009).

  37. Van V.T., Matsui H., Mita S.: A class of generalized quasi-cyclic LDPC codes: high-rate and low-complexity encoder for data storage devices. In: IEEE Global Communications Conference (GLOBECOM), Miami, FL, 2010, pp. 6–10.

Download references

Acknowledgments

This work was partly supported by KAKENHI, Grant-in-Aid for Scientific Research C, 23560478. The author would like to thank the anonymous referees for their helpful comments which improved the final presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Matsui.

Additional information

Communicated by C. Carlet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, H. On generator matrices and parity check matrices of generalized integer codes. Des. Codes Cryptogr. 74, 681–701 (2015). https://doi.org/10.1007/s10623-013-9883-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9883-7

Keywords

Mathematics Subject Classification

Navigation