Skip to main content

New extremal binary self-dual codes of length 64 from \(R_3\)-lifts of the extended binary Hamming code

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we use the graded ring construction to lift the extended binary Hamming code of length 8 to \(R_k\). Using this method we construct self-dual codes over \(R_3\) of length 8 whose Gray images are self-dual binary codes of length 64. In this way, we obtain twenty six non-equivalent extremal binary Type I self-dual codes of length 64, ten of which have weight enumerators that were not previously known to exist. The new codes that we found have \(\beta = 1, 5, 13, 17, 21, 25, 29, 33, 41\) and 52 in \(W_{64,2}\) and they all have automorphism groups of size 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosma W., Cannon J., Playoust C.: The magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).

    Google Scholar 

  2. Bouyuklieva S., Yorgov V.: Singly-even self-dual codes of length 40. Des. Codes Cryptogr. 9, 131–141 (1996).

    Google Scholar 

  3. Bouyuklieva S.: Some optimal self-orthogonal and self-dual codes. J. Discret. Math. 287, 1–10 (2004).

    Google Scholar 

  4. Chigira N., Harada M., Kitazume M.: Extremal self-dual codes of length 64 through neighbors and covering radii. Des. Codes Cryptogr. 42, 93–101 (2007).

    Google Scholar 

  5. Conway J.H., Sloane N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Trans. Inf. Theory 36(6), 1319–1333 (1990).

    Google Scholar 

  6. Dougherty S.T., Gaborit P., Harada M., Solé P.: Type II codes over \({\mathbb{F}}_2+u{\mathbb{F}}_2\). IEEE Trans. Inf. Theory 45(1), 32–45 (1999).

    Google Scholar 

  7. Dougherty S.T., Mesnager S., Solé P.: Secret sharing scehmes based on self-dual codes. In: Proceedings of IEEE Information Theory Workshop, ITW, Porto (2008).

  8. Dougherty S.T., Kim J.L., Kulosman H., Liu H.: Self-dual codes over commutative Frobenius rings. Finite Fields Appl. 16, 14–26 (2010).

    Google Scholar 

  9. Dougherty S.T., Yildiz B., Karadeniz S.: Codes over \(R_k\), gray maps and their binary images. Finite Fields Appl. 17(3), 205–219 (2011).

  10. Dougherty S., Yildiz B., Karadeniz S.: Self-dual codes over \(R_k\) and binary self-dual codes. Eur. J. Pure Appl. Math. 6(1), 89–106 (2013).

    Google Scholar 

  11. Gaborit P., Otmani A.: Experimental constructions of self-dual codes. Finite Fields Appl. 9, 372–394 (2003).

    Google Scholar 

  12. Harada M., Gulliver T.A., Kaneta H.: Classification of extremal double-circulant self-dual codes of length up to 62. Discret. Math. 188, 127–136 (1998).

    Google Scholar 

  13. Harada M., Munemasa A., Tanabe K.: Extremal self-dual [40,20,8] codes with covering radius 7. Finite Fields Appl. 10, 183–197 (2004).

    Google Scholar 

  14. Harada M., Kiermaier M., Wasserman A., Yorgova R.: New binary singly even self-dual codes. IEEE Trans. Inf. Theory 56(4), 1612–1617 (2010).

    Google Scholar 

  15. Karadeniz S., Kaya A.: New extremal binary self-dual codes of length 58 as \(R3\)-lifts from the shortened \([8,4,4]\) binary Hamming code. J. Franklin Inst. 349(9), 2824–2833 (2012).

  16. Karadeniz S., Yildiz B.: Double-circulant and double-bordered-circulant constructions for self-dual codes over \(R_2\). Adv. Math. Commun. 6(2), 193–202 (2012).

    Google Scholar 

  17. Nishimura T.: A new extremal self-dual code of length 64. IEEE Trans. Inf. Theory 50(9), 2173–2174 (2004).

    Google Scholar 

  18. Rains E.M.: Shadow bounds for self dual codes. IEEE Trans. Inf. Theory 44, 134–139 (1998).

    Google Scholar 

  19. Tsai H.P., Shih P.Y., Wuh R.Y., Su W.K., Chen C.H.: Construction of self-dual codes. IEEE Trans. Inf. Theory 54(8), 3826–3831 (2008).

    Google Scholar 

  20. Wood J.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999).

    Google Scholar 

  21. www.fatih.edu.tr/~akaya/NewSD64R3Hamm.txt. Accessed 22 Sep 2013.

  22. Yildiz B., Karadeniz S.: Linear codes over \({\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2\). Des. Codes Cryptogr. 54(1), 61–81 (2010).

  23. Yildiz B., Karadeniz S.: Self-dual codes over \({\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2\). J. Franklin Inst. 347(10), 1888–1894 (2010).

Download references

Acknowledgments

The authors would like to thank the anonymous referees for their valuable remarks and suggestions that improved the presentation of the paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahattin Yildiz.

Additional information

Communicated by J.-L. Kim.

This paper was prepared and submitted before [15] in which it was cited, but the latter got published before the current paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karadeniz, S., Yildiz, B. New extremal binary self-dual codes of length 64 from \(R_3\)-lifts of the extended binary Hamming code. Des. Codes Cryptogr. 74, 673–680 (2015). https://doi.org/10.1007/s10623-013-9884-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9884-6

Keywords

Mathematics Subject Classification