Skip to main content
Log in

On low weight codewords of generalized affine and projective Reed–Muller codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We propose new results on low weight codewords of affine and projective generalized Reed–Muller (GRM) codes. In the affine case we prove that if the cardinality of the ground field is large compared to the degree of the code, the low weight codewords are products of affine functions. Then, without this assumption on the cardinality of the field, we study codewords associated to an irreducible but not absolutely irreducible polynomial, and prove that they cannot be second, third or fourth weight depending on the hypothesis. In the projective case the second distance of GRM codes is estimated, namely a lower bound and an upper bound on this weight are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus E., Key J.: Designs and their codes. In: Cambridge Tracts in Mathematics, vol. 103. Cambridge University Press, Cambridge (1992).

  2. Blake I., Mullin R.: The Mathematical Theory of Coding. Academic Press, New York (1975).

  3. Bruen A.: Polynomial multiplicities over finite fields and intersection sets. J. Comb. Theory 60(1), 19–33 (1992).

    Google Scholar 

  4. Bruen A.: Applications of finite fields to combinatorics and finite geometries. Acta Appl. Math. 93(1–3), 179–196 (2006).

    Google Scholar 

  5. Bruen A.: Blocking sets and low-weight codewords in the generalized Reed–Muller codes. In: Bruen A., Wehlau D., Society C.M. (eds.) Error-Correcting Codes, Finite Geometries, and Cryptography, Contemporary Mathematics, vol. 525, pp. 161–164. American Mathematical Society (2010).

  6. Cherdieu J.P., Rolland R.: On the number of points of some hypersurfaces in \({\mathbb{F}}_q^n.\) Finite Field Appl. 2, 214–224 (1996).

  7. Delsarte P., Goethals J., MacWilliams F.: On generalized Reed–Muller codes and their relatives. Inform. Control 16, 403–442 (1970).

    Google Scholar 

  8. Dickson L.: Linear Groups. Dover Publications, New York (1958).

  9. Erickson D.: Counting zeros of polynomials over finite fields. PhD Thesis, California Institute of Technology, Pasadena (1974).

  10. Geil O.: On the second weight of generalized Reed–Muller codes. Des. Codes Cryptogr. 48(3), 323–330 (2008).

    Google Scholar 

  11. Kasami T., Lin S., Peterson W.: New generalizations of the Reed–Muller codes. Part I: primitive codes. IEEE Trans. Inform. Theory IT-14(2), 189–199 (1968).

    Google Scholar 

  12. Kasami T., Tokura N., Azumi S.: On the weight enumeration of weights less than \(2.5\)d of Reed–Muller codes. Inform. Control 30(4), 380–395 (1976).

    Google Scholar 

  13. Lachaud G.: Projective Reed–Muller codes. In: Coding Theory and Applications. Lecture Notes in Computer Science, vol. 311, pp. 125–129. Springer, Berlin (1988).

  14. Lavrauw M., Storme L., Van de Voorde G.: On the code generated by the incidence matrix of points and hyperplanes in \(PG(n,\,q)\) and its dual. Des. Codes Cryptogr. 48, 231–245 (2008a).

  15. Lavrauw M., Storme L., Van de Voorde G.: On the code generated by the incidence matrix of points and k-spaces in \(PG(n,\,q)\) and its dual. Finite Fields Appl. 14, 1020–1038 (2008b).

  16. Lavrauw M., Storme L., Sziklai P., Van de Voorde G.: An empty interval in the spectrum of small weight codewords in the code from points and k-spaces in \(PG(n,\,q).\) J. Comb. Theory 116(4), 996–1001 (2009).

  17. Leducq E.: Second weight codewords of generalized Reed–Muller codes. Cryptogr. Commun. 5, 241–276 (2012).

    Google Scholar 

  18. Leducq E.: A new proof of Delsarte, Goethals and MacWilliams theorem on minimal weight codewords of generalized Reed–Muller codes. Finite Fields Appl. 18(3), 581–586 (2013).

    Google Scholar 

  19. MacWilliams F., Sloane N.: The theory of error-correcting codes. In: Mathematical Library, vol. 16. North Holland, Amsterdam (1977).

  20. McEliece R.: Quadratic Forms Over Finite Fields and Second-Order Reed–Muller Codes. Technical Report, JPL Space Programs Summary III (1969).

  21. Mercier D.J., Rolland R.: Polynômes homogènes qui s’annulent sur l’espace projectif \({\mathbb{P}}^m({\mathbb{F}}_q).\) J. Pure Appl. Algebra 124, 227–240 (1998).

  22. Rentería C., Tapia-Recillas H.: Reed–Muller codes: an ideal theory approach. Commun. Algebra 25(2), 401–413 (1997).

    Google Scholar 

  23. Rodier F., Sboui A.: Les arrangements minimaux et maximaux d’hyperplans dans \({{\mathbb{P}}^n({\mathbb{F}}_q)}.\) C. R. Math. Acad. Sci. Paris 344(5), 287–290 (2007).

  24. Rodier F., Sboui A.: Highest numbers of points of hypersurfaces over finite fields and generalized Reed–Muller codes. Finite Fields Appl. 14(3), 816–822 (2008).

    Google Scholar 

  25. Rolland R.: Number of points of non-absolutely irreducible hypersurfaces. In: Algebraic Geometry and Its Applications, Number Theory and Its Applications, Proceedings of the First SAGA Conference, 7–11 May 2007, Papeete, vol. 5, pp. 481–487. World Scientific, Singapore (2008).

  26. Rolland R.: The second weight of generalized Reed–Muller codes in most cases. Cryptogr. Commun. Discret. Struct. Boolean Funct. Seq. 2(1), 19–40 (2010).

    Google Scholar 

  27. Sboui A.: Second highest number of points of hypersurfaces in \({\mathbb{F}}_q^n.\) Finite Fields Appl. 13(3), 444–449 (2007).

  28. Sboui A.: Special numbers of rational points on hypersurfaces in the n-dimensional projective space over a finite field. Discret. Math. 309(16), 5048–5059 (2009).

    Google Scholar 

  29. Schmidt W.: Equations Over Finite Fields: An Elementary Approach. Lecture Notes in Mathematics, vol. 536. Springer, Berlin (1976).

  30. Serre J.P.: Lettre à M. Tsfasman du 24 Juillet 1989. In: Journées arithmétiques de Luminy 17–21 Juillet 1989, Astérisque, pp. 198–200. Société Mathématique de France (1991).

  31. Sørensen A.: A Note on Algorithms Deciding Rationality and Absolutely Irreducibility Based on the Number of Rational Solutions. RISC-Linz Series 91-37.0 (1991a).

  32. Sørensen A.: Projective Reed–Muller codes. Trans. Inform. Theory IT-37(6), 1567–1576 (1991b).

  33. Van de Voorde G.: Blocking sets in finite projective spaces and coding theory. PhD Thesis, Thesis Faculteit Wetenschappen Vakgroep Zuivere Wiskunde en Computeralgebra (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Rolland.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballet, S., Rolland, R. On low weight codewords of generalized affine and projective Reed–Muller codes. Des. Codes Cryptogr. 73, 271–297 (2014). https://doi.org/10.1007/s10623-013-9911-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9911-7

Keywords

Mathematics Subject Classification

Navigation