Skip to main content
Log in

Linear covering codes and error-correcting codes for limited-magnitude errors

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2014

Abstract

The concepts of a linear covering code and a covering set for the limited-magnitude-error channel are introduced. A number of covering-set constructions, as well as some bounds, are given. In particular, optimal constructions are given for some cases involving small-magnitude errors. A problem of Stein is partially solved for these cases. Optimal packing sets and the corresponding error-correcting codes are also considered for some small-magnitude errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews G.E.: Number Theory. W. B. Saunders Co., Philadelphia (1971).

  2. Cassuto Y., Schwartz M., Bohossian V., Bruck J.: Codes for asymmetric limited-magnitude errors with applications to multilevel flash memories. IEEE Trans. Inf. Theory 56(4), 1582–1595 (2010).

    Google Scholar 

  3. Chen Z., Shparlinski I.E., Winterhof A.: Covering sets for limited-magnitude errors. arXiv:1310.0120v1 [cs.IT] 1 Oct 2013.

  4. Hardy G.H., Wright E.M.: An Introduction to the Theory of Numbers, 4th edn. Oxford University Press, London (1960).

  5. Jiang A., Langberg M., Schwartz M., Bruck J.: Trajectory codes for flash memory. IEEE Trans. Inf. Theory 59(7), 4530–4541 (2013).

    Google Scholar 

  6. Kløve T., Schwartz M.: Covering sets for limited-magnitude errors. In: Preproceedings, International Workshop on Coding and Cryptography (WCC), Bergen, 15–19 April 2013, pp. 69–78. http://www.selmer.uib.no/WCC2013/PreProceedings.

  7. Kløve T., Bose B., Elarief N.: Systematic, single limited magnitude error correcting codes for flash memories. IEEE Trans. Inf. Theory 57(7), 4477–4487 (2011).

    Google Scholar 

  8. Kløve T., Luo J., Naydenova I., Yari S.: Some codes correcting asymmetric errors of limited magnitude. IEEE Trans. Inf. Theory 57(11), 7459–7472 (2011).

    Google Scholar 

  9. Kløve T., Luo J., Yari S.: Codes correcting single errors of limited magnitude. IEEE Trans. Inf. Theory 58(4), 2206–2219 (2012).

    Google Scholar 

  10. Schwartz M.: Quasi-cross lattice tilings with applications to flash memory. IEEE Trans. Inf. Theory 58(4), 2397–2405 (2012).

    Google Scholar 

  11. Schwartz M.: On the non-existence of lattice tilings by quasi-crosses. Eur. J. Comb. 36, 130–142 (2014).

    Google Scholar 

  12. Stein S.K.: Tiling, packing, and covering by clusters. Rocky Mt. J. Math. 16, 277–321 (1986).

    Google Scholar 

  13. Stein S.K., Szabó S.: Algebra and Tiling. The Mathematical Association of America, Washington, DC (1994).

  14. Szabó S.: Lattice covering by semicrosses of arm length 2. Eur. J. Comb. 12, 263–266 (1991).

    Google Scholar 

  15. Yari S., Kløve T., Bose B.: Some codes correcting unbalanced errors of limited magnitude for flash memories. IEEE Trans. Inf. Theory 59(11), 7278–7287 (2013).

    Google Scholar 

Download references

Acknowledgments

This study is supported by The Norwegian Research Council and by ISF Grant 134/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torleiv Kløve.

Additional information

Moshe Schwartz—on sabbatical leave at the Research Laboratory of Electronics, MIT.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Appendix

Appendix

1.1 Proof of Theorem 5

In the setting of Theorem 5 we have \(q\) odd. Let \(\varsigma _r(q)\) denote the number of cyclotomic cosets of odd size. In [8], an expression for \(\varsigma _1(q)\) was given, in a slightly different notation. Here we will use a similar method to show that \(\varsigma _r(q)=\vartheta _r(q_0)\) for all \(r\).

Let

$$\begin{aligned} \mathbb {Z}_q^* =\bigl \{a\mid \gcd (a,q)=1, a\in [1,q-1]\bigr \}, \end{aligned}$$

and for \(d|q\), let

$$\begin{aligned} \mathbb {Z}_{q,d}=\left\{ a\frac{q}{d} \, \Big |\, a\in \mathbb {Z}_d^*\right\} . \end{aligned}$$

In particular, \( \mathbb {Z}_{q,1} =\left\{ 0\right\} \). The size of \(\mathbb {Z}_{q,d}\) is \(\varphi (d)\), where \(\varphi (\cdot )\) is Euler’s totient function. We have the following disjoint-union decomposition [8, Lemma 4]:

$$\begin{aligned} \mathbb {Z}_q= \bigcup _{d\mid q} \mathbb {Z}_{q,d}. \end{aligned}$$
(22)

Lemma 4

Let \(d\) be a divisor of \(q\). For any \(b\in \mathbb {Z}_{q,d}\), the least positive \(\ell \) such that \(2^\ell b\equiv b\;(\mathrm{mod}\; q)\) is exactly \(\ell _d\).

Proof

Let \(b=a\cdot q/d\). Since \(\gcd (a,q)=1\) by definition, we have the following equivalences:

$$\begin{aligned} 2^\ell \equiv 1 \quad (\mathrm{mod}\; d)\, \Leftrightarrow \, 2^\ell \frac{q}{d}\equiv \frac{q}{d} \quad (\mathrm{mod}\; q) \,\Leftrightarrow \, 2^\ell a\frac{q}{d}\equiv a\frac{q}{d} \quad (\mathrm{mod}\; q). \end{aligned}$$

\(\square \)

We observe that Lemma 4 implies that \(\mathbb {Z}_{q,d}\) is the disjoint union of \(\varphi (d)/\ell _d\) cosets of size \(\ell _d\).

In [8, Lemma 5] the following result was given.

Lemma 5

  1. (i)

    For odd \(d=p_1^{e_1}p_2^{e_2}\ldots p_s^{e_s}\), with \(p_i\) distinct odd primes, we have

    $$\begin{aligned} \ell _d={{\mathrm{lcm}}}\left( \ell _{p_1^{e_1}}, \ell _{p_2^{e_2}}, \ldots , \ell _{p_s^{e_s}}\right) . \end{aligned}$$

    In particular, \(v_2(\ell _d)=i\) if and only if \(\max _{1\le j\le s}v_2(\ell _{p_j^{e_j}})=i\).

  2. (ii)

    For any odd prime \(p\), suppose \(2^{\ell _p}=1+p^{u_p}s_p\) with \(p\not \mid s_p\). Then

    $$\begin{aligned} \ell _{p^k}= {\left\{ \begin{array}{ll} \ell _p &{}\quad \! \text {if } k\le u_p,\\ p^{k-u_p} \ell _p &{}\quad \! \text {if } k>u_p. \end{array}\right. } \end{aligned}$$

From Lemma 5 we get the following more general result:

Lemma 6

For any odd \(q\), and \(d_1, d_2, \ldots , d_r\) divisors of \(q\) we have

$$\begin{aligned} {{\mathrm{lcm}}}(\ell _{d_1}, \ell _{d_2}, \ldots ,\ell _{d_r}) = \ell _{ {{\mathrm{lcm}}}(d_1,d_2,\ldots ,d_r) }. \end{aligned}$$

Proof

Let \(p_j\), \(j=1,2,\ldots ,s\), be the set of all primes dividing \(q\), and let \(d_i= \prod _{j=1}^s p_j^{e_{i,j} }\). Then

$$\begin{aligned} {{\mathrm{lcm}}}(d_1,d_2,\ldots ,d_r)= \prod _{j=1}^s p_j^{\max _{1\le i \le r}e_{i,j}}. \end{aligned}$$

By Lemma 5 we get

$$\begin{aligned} {{\mathrm{lcm}}}_{1\le i\le r} (\ell _{d_i})&= {{\mathrm{lcm}}}_{1\le i\le r} {{\mathrm{lcm}}}_{1\le j \le s} (\ell _{p_j^{e_{i,j}}}) = {{\mathrm{lcm}}}_{1\le j \le s} {{\mathrm{lcm}}}_{1\le i\le r} (\ell _{p_j^{e_{i,j}}}) \\&= {{\mathrm{lcm}}}_{1\le j \le s} (\ell _{ p_j^{\max _{1\le i \le r}e_{i,j}}}) = \ell _{ {{\mathrm{lcm}}}(d_1,d_2,\ldots ,d_r) }. \end{aligned}$$

\(\square \)

Now, consider a cyclotomic coset in \(\mathbb {Z}_q^r\), generated by \((a_1,a_2,\ldots a_r)\). Suppose \(a_i\in \mathbb {Z}_{q,d_i}\). Then the size of the coset is \({{\mathrm{lcm}}}(\ell _{d_1},\ell _{d_2},\ldots , \ell _{d_r})=\ell _{{{\mathrm{lcm}}}(d_1,d_2,\ldots ,d_r)}\), and the number of such cosets is

$$\begin{aligned} \frac{\varphi (d_1)\varphi (d_2)\ldots \varphi (d_r)}{\ell _{{{\mathrm{lcm}}}(d_1,d_2,\ldots ,d_r)}}. \end{aligned}$$

We get cosets of odd order if and only if \(d_i|q_0\) for all \(i\). Hence we get

$$\begin{aligned} \varsigma _r(q)= \sum _{d_1\mid q_0} \sum _{d_2\mid q_0}\cdots \sum _{d_r\mid q_0} \frac{\varphi (d_1)\varphi (d_2)\ldots \varphi (d_r)}{\ell _{{{\mathrm{lcm}}}(d_1,d_2,\ldots ,d_r)}} =\sum _{d\mid q_0} \frac{\Phi _r(d)}{\ell _{d}}, \end{aligned}$$
(23)

where

$$\begin{aligned} \Phi _r(d)= \sum _{ {{\mathrm{lcm}}}(d_1,d_2,\ldots ,d_r)=d } \varphi (d_1)\varphi (d_2)\ldots \varphi (d_r). \end{aligned}$$

It follows that

$$\begin{aligned} \sum _{c| d} \Phi _r(c)&= \sum _{d_1| d,d_2| d,\ldots ,d_r| d} \varphi (d_1)\varphi (d_2)\ldots \varphi (d_r)\\&= \left( \sum _{d_1| d}\varphi (d_1) \right) \left( \sum _{d_2| d}\varphi (d_2) \right) \ldots \left( \sum _{d_r| d}\varphi (d_r) \right) = \left( \sum _{a | d}\varphi (a) \right) ^r = d^r. \end{aligned}$$

Using Möbius inversion, we get

$$\begin{aligned} \Phi _r(d)= \sum _{c| d}\mu \left( \frac{d}{c} \right) c^r. \end{aligned}$$
(24)

Substituting this expression in (23) we get

$$\begin{aligned} \varsigma _r(q)=\vartheta _r(q_0). \end{aligned}$$

This completes the proof of Theorem 5.

For \(r=1\), the expression in (23) was given in [8, Theorem 2], in a slightly different notation. In the same theorem we determined \(\theta _{2,0,1}(q)\). For \(r>1\), the result is new.

Example 8

If \(q_0= p^a\), where \(p\) is a prime and \(a\ge 1\), the divisors of \(q_0\) are \(p^b\), \(b\in [0,a]\). If \(d=p^b>1\), then \(\mu (d/c)\ne 0\) for \(c\mid d\) exactly for \(c=p^a\) and \(c=p^{a-1}\). Since \(\mu (1)=1\) and \(\mu (p)=-1\), we get

$$\begin{aligned} \vartheta _r(p^a)=1+ \sum _{b=1}^a \frac{p^{br}-p^{(b-1)r}}{\ell _{p^b}}. \end{aligned}$$

In particular, if \(v_2\left( 2^{\ell _p}-1 \right) =1\), that is \(u_p=0\) (which is the situation in most cases), Lemma 5 implies that \(\ell _{p^b}=p^{b-1}\ell _p\) for all \(b\ge 1\). Hence, in this case we get

$$\begin{aligned} \vartheta _1(p^a)=1+ \frac{1}{\ell _p} \sum _{b=1}^a \left( p-1 \right) = 1+\frac{a(p-1)}{\ell _p}. \end{aligned}$$

and for \(r>1\) we get

$$\begin{aligned} \vartheta _r(p^a)=1+ \frac{1}{\ell _p} \sum _{b=1}^a \left( p^{b(r-1)+1}-p^{(b-1)(r-1)} \right) = 1+\frac{(p^r-1)(p^{a(r-1)}-1)}{(p^{r-1}-1)\ell _p}. \end{aligned}$$

In particular,

$$\begin{aligned} \vartheta _1(p^r)=1+\frac{r(p-1)}{\ell _p} \quad \text { and }\quad \vartheta _r(p)=1+\frac{p^r-1}{\ell _p}, \end{aligned}$$

and so \(\vartheta _1(p^r)<\vartheta _r(p)\). This is a special case of Lemma 10 below.

1.2 Proof of Theorem 8

The expressions for \(\omega _{2,0,r}(q)\) in Theorem 5 and \(\theta _{2,0,r}(q)\) in (12), and their proofs, are closely related. In the same way we will get closely related expressions and proofs for \(\omega _{2,2,r}(q)\) and \(\theta _{2,2,r}(q)\). For \(\theta _{2,2,1}(q)\), the expression in Theorem 8 was given in [9], in a slightly different notation. For general \(r\) we get a proof that generalizes its proof.

Consider the coset generated by a non-zero \(\mathbf{a}=(a_1,a_2,\ldots , a_r)\in \mathbb {Z}_q^r\). We first remark that if \(-\mathbf{a}\in \sigma (\mathbf{a})\), that is, \(\sigma (-\mathbf{a})=\sigma (\mathbf{a})\), then \(\left| \sigma (\mathbf{a})\right| \) is even: if \(u>0\) is minimal such that \(-\mathbf{a}=2^u\mathbf{a}\;(\mathrm{mod}\; q)\), then \(\left| \sigma (\mathbf{a})\right| =2u\).

The coset \(\sigma (\mathbf{a})\) has odd size if and only if \(\sigma (a_i)\), \(1\le i \le r\), all have odd size. In this case \(\sigma (\mathbf{a})\) and \(\sigma (-\mathbf{a})\) are disjoint, and the \((\left| \sigma (\mathbf{a})\right| +1)/2\) elements \(2^{2i}\mathbf{a}\), \(i\in [0,(\left| \sigma (\mathbf{a})\right| -1)/2]\) will cover \(\sigma (\mathbf{a})\cup \sigma (-\mathbf{a})\), and the union cannot be covered by fewer elements. We select these elements in a covering set. Hence we get a contribution \((\left| \sigma (\mathbf{a})\right| +1)/4\) to \(\omega _{2,2,r}(q)\) from the coset \(\sigma (\mathbf{a})\) and \((\left| \sigma (\mathbf{a})\right| +1)/4=(\left| \sigma (-\mathbf{a})\right| +1)/4\) from the coset \(\sigma (-\mathbf{a})\). The number of such cosets is \(\vartheta _r(q_0)\) as was shown in the proof of Theorem 5.

If \(\left| \sigma (\mathbf{a})\right| \) is even, but \(\sigma (-\mathbf{a})\ne \sigma (\mathbf{a})\) (that is, the two sets are disjoint), then we select the \(\left| \sigma (\mathbf{a})\right| /2\) elements \(2^{2i}\mathbf{a}\), \(i\in [0,\left| \sigma (\mathbf{a})\right| /2-1]\) to cover \(\sigma (\mathbf{a})\cup \sigma (-\mathbf{a})\). The contribution to \(\omega _{2,2,r}(q)\) from the cosets \(\sigma (\mathbf{a})\) and \(\sigma (-\mathbf{a})\) is therefore \(\left| \sigma (\mathbf{a})\right| /4+\left| \sigma (-\mathbf{a})\right| /4\).

Now, consider the situation when \(\sigma (-\mathbf{a})=\sigma (\mathbf{a})\). As before, let \(u>0\) be the minimal integer such that \(-\mathbf{a}=2^u\mathbf{a}\;(\mathrm{mod}\; q)\). If \(u\) is even, then the \(u/2=\left| \sigma (\mathbf{a})\right| /4\) elements \(2^{2i}\mathbf{a}\), \(i\in [0,u/2-1]\) cover \(\sigma (\mathbf{a})\). Finally, if \(u\) is odd, then the \((u+1)/2=(\left| \sigma (\mathbf{a})\right| +2)/4\) elements \(2^{2i}\mathbf{a}\), \(i\in [0,(u-1)/2]\) cover \(\sigma (\mathbf{a})\). We see that \(u\) is odd if and only if \(\sigma (a_i)\) is singly even for all \(i\). In the proof of [9, Theorem 6], it was shown that this occurs exactly when \(a_i\in \mathbb {Z}_{q,d_i}\) for some \(d_i|q_1\). A proof similar to the proof in Appendix 10 shows that the number of such cosets is \(\vartheta _r(q_1)\). Summing over all the cosets, we get the expression in Theorem 8.

1.3 A result for \(\vartheta _r(q)\)

A simple, but useful relation is the following.

Lemma 7

If \(d_1|d_2\), then \( \ell _{d_1} \le \ell _{d_2}\).

Proof

By definition, \( d_2| 2^{\ell _{d_2}}-1\) and so \( d_1| 2^{\ell _{d_2}}-1\), which implies that \(\ell _{d_1} \le \ell _{d_2}\) (and in fact \( \ell _{d_1}|\ell _{d_2}\)). \(\square \)

We recall that \( \Phi _r(d) \) was defined by (24). This is a multiplicative function, as the following lemma shows.

Lemma 8

If \(\gcd (d_1,d_2)=1\), then \( \Phi _r(d_1d_2)= \Phi _r(d_1) \Phi _r(d_2)\).

Proof

If \(c|d_1d_2\), then \(c=c_1c_2\), where \(c_1|d_1\) and \(c_2|d_2\). Hence

$$\begin{aligned} \Phi _r(d_1d_2)= \sum _{c| d_1 d_2}\mu \left( \frac{d_1d_2}{c} \right) c^r= \left( \sum _{c\mid d_1}\mu \left( \frac{d_1}{c} \right) c^r \right) \left( \sum _{c\mid d_2}\mu \left( \frac{d_2}{c} \right) c^r \right) = \Phi _r(d_1) \Phi _r(d_2). \end{aligned}$$

\(\square \)

For a prime \(p\), define \( \Delta _r(p^\beta ) \) by

$$\begin{aligned} \Delta _r(p^\beta )={\left\{ \begin{array}{ll} 1 &{}\quad \! \beta =0, \\ p^{r\beta }-p^{r(\beta -1)} &{}\quad \! \text {otherwise.} \end{array}\right. } \end{aligned}$$

For convenience, we let \( \Delta (p^\beta )=\Delta _1(p^\beta )\).

Lemma 9

If \(p\) is a prime and \(\beta \ge 1\), then

$$\begin{aligned} \Phi _r(p^\beta )=\Delta _r(p^\beta )=\sum _{j=0}^{r-1} \Delta (p^{\beta -j}). \end{aligned}$$

Proof

We have

$$\begin{aligned} \Phi _r(p^\beta )=p^{r\beta }-p^{r(\beta -1)}=\Delta _r(p^\beta )=\sum _{j=0}^{r-1}\left( p^{r\beta -j}-p^{r\beta -j-1} \right) =\sum _{j=0}^{r-1} \Delta (p^{\beta -j}). \end{aligned}$$

\(\square \)

We now give a main lemma on \(\vartheta _r(q)\).

Lemma 10

For all \(r\ge 2\) and odd \(q\) we have \(\vartheta _1(q^r)\le \vartheta _r(q) \).

Proof

By definition, \(\vartheta _r(q)=\sum _{d|q}\frac{1}{\ell _d} \Phi _r(d)\). Let \(q= \prod _{i=1}^{s}p_i^{\alpha _i} \) be the prime factorization of \(q\). The divisors of \(q^r\) are all numbers of the form \(\prod _{i=1}^{s}p_i^{\beta _i} \) where \(0\le \beta _i\le r\alpha _i\). Using Lemmas 8 and 9, we get

$$\begin{aligned} \Phi _r\left( \prod _{i=1}^{s}p_i^{\beta _i} \right)&=\prod _{i=1}^{s} \Phi _r\left( p_i^{\beta _i}\right) =\prod _{\begin{array}{c} 1\le i \le s\\ \beta _i>0 \end{array}} \sum _{j_i=0}^{r-1} \Delta \left( p_i^{r\beta _i-j_i}\right) . \end{aligned}$$

Hence

$$\begin{aligned} \vartheta _r(q) = \sum _{\beta _1=0}^{\alpha _1} \sum _{\beta _2=0}^{\alpha _2} \cdots \sum _{\beta _s=0}^{\alpha _s} \frac{1}{\ell _{ \prod _{1\le i \le s}p_i^{\beta _i}}} \prod _{\begin{array}{c} 1\le i \le s\\ \beta _i>0 \end{array}} \sum _{j_i=0}^{r-1} \Delta \left( p_i^{r\beta _i-j_i}\right) . \end{aligned}$$

Similarly, we get

$$\begin{aligned} \vartheta _1(q^r)= \sum _{\beta _1=0}^{r\alpha _1} \sum _{\beta _2=0}^{r\alpha _2} \cdots \sum _{\beta _s=0}^{r\alpha _s} \frac{1}{ \ell _{ \prod _{1\le i \le s} p_i^{\beta _i} } } \prod _{i=1}^s \Delta \left( p_i^{\beta _i}\right) . \end{aligned}$$

In order to compare the two expressions we note all the summands are non-negative, and of the form \(\prod _{i=1}^s \Delta (p_i^{\gamma _i})\). One can verify that the coefficient of \(\prod _{i=1}^s \Delta (p_i^{\gamma _i})\) in \(\vartheta _r(q)\) is

$$\begin{aligned} C_r=\ell ^{-1}_{ \prod _{1\le i \le s}p_i^{\left\lceil \gamma _i/r \right\rceil }}, \end{aligned}$$

whereas its coefficient in \(\vartheta _1(q^r)\) is

$$\begin{aligned} C_1=\ell ^{-1}_{ \prod _{1\le i \le s}p_i^{\gamma _i}}. \end{aligned}$$

Since \(\left\lceil \gamma _i/r \right\rceil \le \gamma _i\) we have

$$\begin{aligned} \left. \prod _{1\le i \le s}p_i^{\left\lceil \gamma _i/r \right\rceil } \right| \prod _{1\le i \le s}p_i^{\gamma _i}, \end{aligned}$$

and so \(C_r\ge C_1\) by Lemma 7. Hence \(\vartheta _r(q)\ge \vartheta _1(q^r)\). \(\square \)

We illustrate the proof by a simple example.

Example 9

Let \(q=p^2\pi \) where \(p\) and \(\pi \) are distinct odd primes, and let \(r=2\). Then

$$\begin{aligned} \vartheta _2(q)&= 1 + \frac{\Delta _2(p)}{\ell _p} + \frac{\Delta _2(p^2)}{\ell _{p^2}} + \frac{\Delta _2(\pi )}{\ell _{\pi }} + \frac{\Delta _2(p)\Delta _2(\pi )}{\ell _{p\pi }} + \frac{\Delta _2(p^2)\Delta _2(\pi )}{\ell _{p^2\pi }} \\&= 1 + \frac{\Delta (p^2)+\Delta (p)}{\ell _p} + \frac{\Delta (p^4)+\Delta (p^3)}{\ell _{p^2}} \\&\quad \ + \frac{\Delta (\pi ^2)+\Delta (\pi )}{\ell _\pi } + \frac{ \left( \Delta (p^2)+\Delta (p) \right) \left( \Delta (\pi ^2)+\Delta (\pi ) \right) }{\ell _{p\pi }} \\&\quad \ + \frac{ \left( \Delta (p^4)+\Delta (p^3) \right) \left( \Delta (\pi ^2)+\Delta (\pi ) \right) }{\ell _{p^2\pi }}, \end{aligned}$$

and

$$\begin{aligned} \vartheta _1(q^2)&= 1 + \frac{\Delta (p)}{\ell _p} + \frac{\Delta (p^2)}{\ell _{p^2}} + \frac{\Delta (p^3)}{\ell _{p^3}} + \frac{\Delta (p^4)}{\ell _{p^4}} \\&\quad \ + \frac{\Delta (\pi )}{\ell _\pi } + \frac{\Delta (p)\Delta (\pi )}{\ell _{p\pi }} + \frac{\Delta (p^2)\Delta (\pi )}{\ell _{p^2\pi }} + \frac{\Delta (p^3)\Delta (\pi )}{\ell _{p^3\pi }} + \frac{\Delta (p^4)\Delta (\pi )}{\ell _{p^4\pi }} \\&\quad \ + \frac{\Delta (\pi ^2)}{\ell _{\pi ^2}} + \frac{\Delta (p)\Delta (\pi ^2)}{\ell _{p\pi ^2}} + \frac{\Delta (p^2)\Delta (\pi ^2)}{\ell _{p^2\pi ^2}} + \frac{\Delta (p^3)\Delta (\pi ^2)}{\ell _{p^3\pi ^2}} + \frac{\Delta (p^4)\Delta (\pi ^2)}{\ell _{p^4\pi ^2}}. \end{aligned}$$

For example, for \(\Delta (p^3)\Delta (\pi )\), the coefficients are \(1/\ell _{p^3\pi }\) and \(1/\ell _{p^2\pi }\) respectively, and \(\ell _{p^2\pi }\le \ell _{p^3\pi }\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kløve, T., Schwartz, M. Linear covering codes and error-correcting codes for limited-magnitude errors. Des. Codes Cryptogr. 73, 329–354 (2014). https://doi.org/10.1007/s10623-013-9917-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-013-9917-1

Keywords

Mathematics Subject Classification (2000)

Navigation