Abstract
2-\((v,k,1)\) Designs with a point-primitive rank 3 automorphism group of affine type are investigated and several new examples are provided.
Similar content being viewed by others
References
André J.: Über Parallelstrukturen. II. Translationsstrukturen. Math. Z. 76, 155–163 (1961).
Aschbacher M.: Finite Groups. Cambridge University Press, Cambridge (1986).
Bannai E.: Maximal subgroups of low rank of finite symmetric and alternating groups. J. Fac. Sci. Univ. Tokyo 18, 1–91 (1976).
Biliotti M., Johnson N.L.: The non solvable rank 3 affine planes. J. Comb. Theory. A 93, 201–230 (1985).
Buekenhout F., Delantsheer A., Doyen J., Kleidman P.B., Liebeck M., Saxl J.: Linear spaces with flag-transitive automorphism groups. Geom. Dedicata 36, 89–94 (1990).
Cameron P.J.: Finite permutation groups and finite simple groups. Bull. Lond. Math. Soc. 13, 1–22 (1981).
Camina A.R., Spiezia F.: Sporadic groups and automorphisms of linear spaces. J. Comb. Des. 8, 353–362 (2000).
Conway J.H., Curtis R.T., Parker R.A., Norton S.P., Wilson, R.A.: Altas of Finite Groups. Clarendon Press, Oxford (1985; reprinted with corrections, 2004).
Cooperstein B.N.: Maximal subgroups of \(G_{2}(2^{n})\). J. Algebra 70, 23–36 (1981).
Dancs S.: The sub-near-field structure of the finite near-fields. Bull. Aust. Math. Soc. 5, 275–280 (1971).
Dancs S.: On finite Dickson near-fields. Abh. Math. Sem. Univ. Hamburg 32, 254–257 (1972).
Delandtsheer A.: Finite flag-transitive linear spaces with alternating socle. In: Algebraic Combinatorics and Applications. Springer, Berlin, pp. 79–88 (2001).
Dembowski P.: Finite Geometries. Springer, Berlin (1968).
Devillers A.: A classification of finite partial linear spaces with a primitive rank 3 automorphism group of almost simple type. Innov. Incid. Geom. 2, 129–175 (2005).
Devillers A.: A classification of finite partial linear spaces with a primitive rank 3 automorphism group of grid type. Eur. J. Comb. 29, 268–272 (2008).
Dickson L.E.: Linear Groups with an Exposition of the Galois Field Theory. Dover, New York (1958).
Dixon J.D., Mortimer B.: Permutation Groups. Springer Verlag, New York (1966).
Foulser D.A.: Solvable primitive permutation groups of low rank. Trans. Am. Math. Soc. 143, 1–54 (1969).
Foulser D.A., Johnson N.L.: The translation planes of order \(q^{2}\) that admit \(SL(2, q)\) as a collineation group II. Odd order. J. Geom. 18, 122–139 (1983).
Foulser D.A., Kallaher M.J.: Solvable, flag-transitive, rank 3 collineation groups. Geom. Dedicata 7, 111–130 (1988).
Hering C.: Transitive linear groups and linear groups which contain irreducible subgroups of prime order. Geom. Dedicata 2, 425–460 (1974).
Hering C.: Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II’. J. Algebra 93, 151–164 (1985).
Hering C.: Two new sporadic doubly transitive linear spaces. In: Baker C., Batten L. (eds.) Finite Geometries. Lecture Notes in Pure and Applied Mathematics, vol. 103. Dekker, New York (1985).
Hirschfeld J.W.P., Thas, J.A.: General Galois Geometries. Oxford University Press, Oxford (1991).
Huppert B.: Zweifach transitive, auflösbare Permutationsgruppen. Math. Z. 68, 126–150 (1957).
Huppert B.: Endliche Gruppen I. Springer, New York (1979).
Hughes D.R., Piper F.C.: Projective Planes. Springer, New York (1973).
Johnson N.L.: Combinatorics of spreads and parallelisms. In: Pure and Applied Mathematics, vol. 295. CRC Press, Boca Raton (2010).
Kallaher M.: On finite affine planes of rank 3. J. Algebra 13, 544–553 (1969).
Kallaher M.: Translation planes admitting solvable rank 3 collineation groups. Geom. Dedicata 6, 305–329 (1977).
Kantor W.M.: Homogenous designs and geometric lattices. J. Comb. Theory. A 38, 66–74 (1985).
Kantor W.M., Liebler R.A.: The rank 3 permutation representations of the finite classical groups. Trans. Am. Math. Soc. 271, 1–71 (1982).
Kleidman P.B.: The subgroup structure of some finite simple groups. Ph.D. Thesis, Cambridge (1987).
Kleidman P.B.: The finite flag-transitive linear spaces with an exceptional automorphism group. In: Finite Geometries and Combinatorial Designs. Contemporary Mathematics, vol. 111. American Mathematical Society, Providence, pp. 117–136 (1990).
Kleidman P.B., Liebeck M.: The Subgroup Structure of the Finite Classical Group. Cambridge University Press, Cambridge (1990).
Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1984).
Liebeck M.W.: The affine permutation groups of rank three. Proc. Lond. Math. Soc. 54, 477–516 (1987).
Liebeck M.W.: The classification of finite linear spaces with flag-transitive automorphism groups of affine type. J. Comb. Theory. A 84, 196–235 (1998).
Liebeck M.W., Saxl J.: The finite permutation groups of rank three. Bull. Lond. Math. Soc. 18, 165–172 (1986).
Liebler R.A.: Finite affine planes of rank three are translation planes. Math. Z. 116, 89–93 (1970).
Lüneburg H.: Translation Planes. Springer, Berlin (1980).
Montinaro A.: 2-\((v, k,1)\) Designs with a point-primitive rank 3 automorphism group of affine type: the extraspecial and the exceptional classes. J. Comb. Des. (accepted for publication).
Passman D.S.: Permutation Groups. W. A. Benjamin, New York (1968).
Ribenboim P.: Catalan’s Conjecture. Academic Press, Boston (1994).
Saxl J.: On finite linear spaces with almost simple flag-transitive automorphism groups. J. Comb. Theory. A 100, 322–348 (2002).
Suzuki M.: On a class of Doubly transitive groups. Ann. Math. 75, 105–145 (1962).
Wilson R., Walsh P., Tripp J., Suleiman I., Parker R., Norton S., Nickerson S., Linton S., Bray J., Abbott R.: Atlas of Finite Group Representations, Version 3. http://brauer.maths.qmul.ac.uk/Atlas/v3.
Zsigmondy K.: Zur la Theorie der Potenzreste. Monatsh. Math. Phys. 3, 265–284 (1892).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by C. E. Praeger.
Rights and permissions
About this article
Cite this article
Biliotti, M., Montinaro, A. & Francot, E. 2-\((v,k,1)\) Designs with a point-primitive rank 3 automorphism group of affine type. Des. Codes Cryptogr. 76, 135–171 (2015). https://doi.org/10.1007/s10623-014-9925-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-014-9925-9