Skip to main content

Advertisement

Log in

2-\((v,k,1)\) Designs with a point-primitive rank 3 automorphism group of affine type

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

2-\((v,k,1)\) Designs with a point-primitive rank 3 automorphism group of affine type are investigated and several new examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. André J.: Über Parallelstrukturen. II. Translationsstrukturen. Math. Z. 76, 155–163 (1961).

  2. Aschbacher M.: Finite Groups. Cambridge University Press, Cambridge (1986).

  3. Bannai E.: Maximal subgroups of low rank of finite symmetric and alternating groups. J. Fac. Sci. Univ. Tokyo 18, 1–91 (1976).

    Google Scholar 

  4. Biliotti M., Johnson N.L.: The non solvable rank 3 affine planes. J. Comb. Theory. A 93, 201–230 (1985).

    Google Scholar 

  5. Buekenhout F., Delantsheer A., Doyen J., Kleidman P.B., Liebeck M., Saxl J.: Linear spaces with flag-transitive automorphism groups. Geom. Dedicata 36, 89–94 (1990).

    Google Scholar 

  6. Cameron P.J.: Finite permutation groups and finite simple groups. Bull. Lond. Math. Soc. 13, 1–22 (1981).

    Google Scholar 

  7. Camina A.R., Spiezia F.: Sporadic groups and automorphisms of linear spaces. J. Comb. Des. 8, 353–362 (2000).

    Google Scholar 

  8. Conway J.H., Curtis R.T., Parker R.A., Norton S.P., Wilson, R.A.: Altas of Finite Groups. Clarendon Press, Oxford (1985; reprinted with corrections, 2004).

  9. Cooperstein B.N.: Maximal subgroups of \(G_{2}(2^{n})\). J. Algebra 70, 23–36 (1981).

  10. Dancs S.: The sub-near-field structure of the finite near-fields. Bull. Aust. Math. Soc. 5, 275–280 (1971).

    Google Scholar 

  11. Dancs S.: On finite Dickson near-fields. Abh. Math. Sem. Univ. Hamburg 32, 254–257 (1972).

    Google Scholar 

  12. Delandtsheer A.: Finite flag-transitive linear spaces with alternating socle. In: Algebraic Combinatorics and Applications. Springer, Berlin, pp. 79–88 (2001).

  13. Dembowski P.: Finite Geometries. Springer, Berlin (1968).

  14. Devillers A.: A classification of finite partial linear spaces with a primitive rank 3 automorphism group of almost simple type. Innov. Incid. Geom. 2, 129–175 (2005).

    Google Scholar 

  15. Devillers A.: A classification of finite partial linear spaces with a primitive rank 3 automorphism group of grid type. Eur. J. Comb. 29, 268–272 (2008).

    Google Scholar 

  16. Dickson L.E.: Linear Groups with an Exposition of the Galois Field Theory. Dover, New York (1958).

  17. Dixon J.D., Mortimer B.: Permutation Groups. Springer Verlag, New York (1966).

  18. Foulser D.A.: Solvable primitive permutation groups of low rank. Trans. Am. Math. Soc. 143, 1–54 (1969).

    Google Scholar 

  19. Foulser D.A., Johnson N.L.: The translation planes of order \(q^{2}\) that admit \(SL(2, q)\) as a collineation group II. Odd order. J. Geom. 18, 122–139 (1983).

  20. Foulser D.A., Kallaher M.J.: Solvable, flag-transitive, rank 3 collineation groups. Geom. Dedicata 7, 111–130 (1988).

    Google Scholar 

  21. Hering C.: Transitive linear groups and linear groups which contain irreducible subgroups of prime order. Geom. Dedicata 2, 425–460 (1974).

    Google Scholar 

  22. Hering C.: Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II’. J. Algebra 93, 151–164 (1985).

    Google Scholar 

  23. Hering C.: Two new sporadic doubly transitive linear spaces. In: Baker C., Batten L. (eds.) Finite Geometries. Lecture Notes in Pure and Applied Mathematics, vol. 103. Dekker, New York (1985).

  24. Hirschfeld J.W.P., Thas, J.A.: General Galois Geometries. Oxford University Press, Oxford (1991).

  25. Huppert B.: Zweifach transitive, auflösbare Permutationsgruppen. Math. Z. 68, 126–150 (1957).

    Google Scholar 

  26. Huppert B.: Endliche Gruppen I. Springer, New York (1979).

  27. Hughes D.R., Piper F.C.: Projective Planes. Springer, New York (1973).

  28. Johnson N.L.: Combinatorics of spreads and parallelisms. In: Pure and Applied Mathematics, vol. 295. CRC Press, Boca Raton (2010).

  29. Kallaher M.: On finite affine planes of rank 3. J. Algebra 13, 544–553 (1969).

    Google Scholar 

  30. Kallaher M.: Translation planes admitting solvable rank 3 collineation groups. Geom. Dedicata 6, 305–329 (1977).

    Google Scholar 

  31. Kantor W.M.: Homogenous designs and geometric lattices. J. Comb. Theory. A 38, 66–74 (1985).

    Google Scholar 

  32. Kantor W.M., Liebler R.A.: The rank 3 permutation representations of the finite classical groups. Trans. Am. Math. Soc. 271, 1–71 (1982).

    Google Scholar 

  33. Kleidman P.B.: The subgroup structure of some finite simple groups. Ph.D. Thesis, Cambridge (1987).

  34. Kleidman P.B.: The finite flag-transitive linear spaces with an exceptional automorphism group. In: Finite Geometries and Combinatorial Designs. Contemporary Mathematics, vol. 111. American Mathematical Society, Providence, pp. 117–136 (1990).

  35. Kleidman P.B., Liebeck M.: The Subgroup Structure of the Finite Classical Group. Cambridge University Press, Cambridge (1990).

  36. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1984).

  37. Liebeck M.W.: The affine permutation groups of rank three. Proc. Lond. Math. Soc. 54, 477–516 (1987).

    Google Scholar 

  38. Liebeck M.W.: The classification of finite linear spaces with flag-transitive automorphism groups of affine type. J. Comb. Theory. A 84, 196–235 (1998).

    Google Scholar 

  39. Liebeck M.W., Saxl J.: The finite permutation groups of rank three. Bull. Lond. Math. Soc. 18, 165–172 (1986).

    Google Scholar 

  40. Liebler R.A.: Finite affine planes of rank three are translation planes. Math. Z. 116, 89–93 (1970).

    Google Scholar 

  41. Lüneburg H.: Translation Planes. Springer, Berlin (1980).

  42. Montinaro A.: 2-\((v, k,1)\) Designs with a point-primitive rank 3 automorphism group of affine type: the extraspecial and the exceptional classes. J. Comb. Des. (accepted for publication).

  43. Passman D.S.: Permutation Groups. W. A. Benjamin, New York (1968).

  44. Ribenboim P.: Catalan’s Conjecture. Academic Press, Boston (1994).

  45. Saxl J.: On finite linear spaces with almost simple flag-transitive automorphism groups. J. Comb. Theory. A 100, 322–348 (2002).

    Google Scholar 

  46. Suzuki M.: On a class of Doubly transitive groups. Ann. Math. 75, 105–145 (1962).

    Google Scholar 

  47. Wilson R., Walsh P., Tripp J., Suleiman I., Parker R., Norton S., Nickerson S., Linton S., Bray J., Abbott R.: Atlas of Finite Group Representations, Version 3. http://brauer.maths.qmul.ac.uk/Atlas/v3.

  48. Zsigmondy K.: Zur la Theorie der Potenzreste. Monatsh. Math. Phys. 3, 265–284 (1892).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Montinaro.

Additional information

Communicated by C. E. Praeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biliotti, M., Montinaro, A. & Francot, E. 2-\((v,k,1)\) Designs with a point-primitive rank 3 automorphism group of affine type. Des. Codes Cryptogr. 76, 135–171 (2015). https://doi.org/10.1007/s10623-014-9925-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-9925-9

Keywords

Mathematics Subject Classification

Navigation