Skip to main content
Log in

The packings of \(\mathrm{PG}(3,3)\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Packings of \(\mathrm{PG}(3,q)\) are closely related to Kirkman’s problem of the 15 schoolgirls from 1850 and its generalizations: Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required to arrange them daily so that no two shall walk twice abreast. The packings of \(\mathrm{PG}(3,2)\) give rise to two of seven solutions of Kirkman’s problem. Here, we continue the problem of classifying packings of \(\mathrm{PG}(3,q)\) by settling the case \(q=3.\) We find that there are exactly 73,343 packings of \(\mathrm{PG}(3,3)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betten A.: Rainbow cliques and the classification of small BLT-sets. In: Kauers, M. (ed.) ISSAC’ 13, Boston, 26–29 June, pp. 53–60 (2013).

  2. Betten A.: Group actions on semilattices. Submitted to the Proceedings of GasCom (2014).

  3. Cayley A.: On the triadic arrangements of seven and fifteen things. Lond. Edinb. Dublin Philos. Mag. J. Sci. 37, 50–53 (1850). (Collected Mathematical Papers I, 481–484).

  4. Colbourn C.J., Dinitz J.H. (eds.): The CRC Handbook of Combinatorial Designs. CRC Press Series on Discrete Mathematics and Its Applications. CRC Press, Boca Raton (1996).

  5. Cole F.N.: Kirkman parades. Bull. Am. Math. Soc. 28, 435–437 (1922).

  6. Dempwolff U., Reifart A.: The classification of the translation planes of order 16. I. Geom. Dedic. 15(2), 137–153 (1983).

  7. Denniston R.H.F.: Some packings of projective spaces. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52, 36–40 (1972).

  8. Denniston R.H.F.: Packings of \(\text{ PG }(3,\, q)\). In: Finite Geometric Structures and Their Applications (Centro Internaz. Mat. Estivo (C.I.M.E.), II Ciclo, Bressanone, 1972), pp. 193–199. Edizioni Cremonese, Rome (1973).

  9. GAP - Groups, Algorithms, and Programming, Version 4.4. The GAP Group, Aachen, Germany and St. Andrews, Scotland (2004).

  10. Hirschfeld J.W.P.: Finite Projective Spaces of Three Dimensions. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1985). Oxford Science Publications.

  11. Johnson N.L.: Two-transitive parallelisms. Des. Codes Cryptogr. 22(2), 179–189 (2001).

  12. Johnson N.L.: Parallelisms of projective spaces. J. Geom. 76(1–2), 110–182 (2003). Combinatorics, 2002 (Maratea).

  13. Johnson N.L.: Combinatorics of Spreads and Parallelisms. Pure and Applied Mathematics (Boca Raton), vol. 295. CRC Press, Boca Raton (2010).

  14. Kirkman T.P.: On the triads made with fifteen things. Lond. Edinb. Dublin Philos. Mag. J. Sci. 37, 169–171 (1850).

  15. Kirkman T.P.: Query VI, p. 48. Lady’s and Gentlemen’s Diary (1850).

  16. Knuth D.: Dancing links. Millen. Perspect. Comput. Sci., 159–187 (2000). arXiv:cs/0011047.

  17. Mathon R.: Searching for spreads and packings. In: Geometry, Combinatorial Designs and Related Structures (Spetses, 1996). London Math. Soc. Lecture Note Ser., vol. 245, pp. 161–176. Cambridge University Press, Cambridge (1997).

  18. Penttila T., Williams B.: Regular packings of \({\rm PG}(3, q)\). Eur. J. Comb. 19(6), 713–720 (1998).

  19. Prince A.R.: Parallelisms of \(\text{ PG }(3,3)\) invariant under a collineation of order 5. In: Mostly Finite Geometries (Iowa City, IA, 1996). Lecture Notes in Pure and Appl. Math., vol. 190, pp. 383–390. Dekker, New York (1997).

  20. Prince A.R.: Uniform parallelisms of \(\text{ PG }(3,3)\). In: Geometry, Combinatorial Designs and Related Structures (Spetses, 1996). London Math. Soc. Lecture Note Ser., vol. 245, pp. 193–200. Cambridge University Press, Cambridge (1997).

  21. Prince A.R.: The cyclic parallelism of \({\rm PG}(3,5)\). Eur. J. Comb. 19(5), 613–616 (1998).

  22. Sarmiento J.: Resolutions of \({\rm PG}(5,2)\) with point-cyclic automorphism group. J. Combin. Des. 8(1), 2–14 (2000).

  23. Schmalz B.: Verwendung von Untergruppenleitern zur Bestimmung von Doppelnebenklassen. Bayreuth. Math. Schr. 31, 109–143 (1990).

  24. Schmalz B.: \(t\)-Designs zu vorgegebener Automorphismengruppe. Bayreuth. Math. Schr. 41, 164 (1992). Dissertation, Universität Bayreuth, Bayreuth (1992).

  25. Topalova S., Zhelezova S.: 2-Spreads and transitive and orthogonal 2-parallelisms of \({\rm PG}(5,2)\). Gr. Comb. 26(5), 727–735 (2010).

  26. Wielandt H.: Finite permutation groups. Translated from the German by R. Bercov. Academic Press, New York (1964).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Betten.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betten, A. The packings of \(\mathrm{PG}(3,3)\) . Des. Codes Cryptogr. 79, 583–595 (2016). https://doi.org/10.1007/s10623-015-0074-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0074-6

Keywords

Mathematics Subject Classification

Navigation