Skip to main content
Log in

On the lifted Zetterberg code

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The even-weight subcode of a binary Zetterberg code is a cyclic code with generator polynomial \(g(x)=(x+1)p(x)\), where p(x) is the minimum polynomial over GF(2) of an element of order \(2^m+1\) in \(GF(2^{2m})\) and m is even. This even binary code has parameters \([2^m+1,2^m-2m, 6]\). The quaternary code obtained by lifting the code to the alphabet \({\mathbb {Z}}_4=\{0,1,2,3\}\) is shown to have parameters \([2^m+1,2^m-2m, d_L ]\), where \(d_L \ge 8\) denotes the minimum Lee distance. The image of the Gray map of the lifted code is a binary code with parameters \((2^{m+1}+2,2^k,d_H)\), where \(d_H \ge 8\) denotes the minimum Hamming weight and \(k=2^{m+1}-4m\). For \(m=6\) these parameters equal the parameters of the best known binary linear code for this length and dimension. Furthermore, a simple algebraic decoding algorithm is presented for these \({\mathbb {Z}}_4\)-codes for all even m. This appears to be the first infinite family of \({\mathbb {Z}}_4\)-codes of length \(n=2^m+1\) with \(d_L \ge 8\) having an algebraic decoding algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bierbrauer J.: Introduction to Coding Theory. Chapman and Hall, Boca Raton (2004).

  2. Bierbrauer J., Edel Y.: Construction of digital nets from BCH codes. Springer LNS 127, 221–231 (1997).

  3. Chen C.L.: Formulas for the solutions of quadratic equations over \(GF(2^m)\). IEEE Trans. Inf. Theory 28, 792–794 (1982).

  4. Chien R.T.: Cyclic decoding procedures for Bose–Chaudhuri–Hocquenghem codes. IEEE Trans. Inf. Theory 10, 357–363 (1964).

  5. Dodunekov S.M., Nilson J.M.E.: Algebraic decoding of the Zetterberg code. IEEE Trans. Inf. Theory 38, 1570–1573 (1992).

  6. Grassl M.: Codetables, www.codetables.de.

  7. Hammons Jr. R., Kumar P.V., Calderbank R., Sloane N., Solé P.: The Z4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994).

  8. Helleseth T., Kumar P.V.: The algebraic decoding of the Z4-linear Goethals code. IEEE Trans. Inf. Theory 41, 2040–2048 (1995).

  9. Honold T., Landjev I.: On maximal arcs in projective Hjelmselv planes over chain rings of even charcteristic. Finite Fields Appl. 11, 292–304 (2005).

  10. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977).

  11. Nechaev A.: The Kerdock code in a cyclic form. Discret. Math. Appl. 1, 365–384 (1991).

  12. Williams K.S.: Note on Cubics Over \(GF(2^n)\). J. Number Theory 7, 361–365 (1975).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Solé.

Additional information

Communicated by J. Bierbrauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alahmadi, A., Alhazmi, H., Helleseth, T. et al. On the lifted Zetterberg code. Des. Codes Cryptogr. 80, 561–576 (2016). https://doi.org/10.1007/s10623-015-0118-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0118-y

Keywords

Mathematics Subject Classification

Navigation