Abstract
The extent to which a sequence of finite length differs from a shifted version of itself is measured by its aperiodic autocorrelations. Of particular interest are sequences whose entries are 1 or \(-1\), called binary sequences, and sequences whose entries are complex numbers of unit magnitude, called unimodular sequences. Since the 1950s, there is sustained interest in sequences with small aperiodic autocorrelations relative to the sequence length. One of the main motivations is that a sequence with small aperiodic autocorrelations is intrinsically suited for the separation of signals from noise, and therefore has natural applications in digital communications. This survey reviews the state of knowledge concerning the two central problems in this area: How small can the aperiodic autocorrelations of a binary or a unimodular sequence collectively be and how can we efficiently find the best such sequences? Since the analysis and construction of sequences with small aperiodic autocorrelations is closely tied to the (often much easier) analysis of periodic autocorrelation properties, several fundamental results on corresponding problems in the periodic setting are also reviewed.
Similar content being viewed by others
References
Alon N., Litsyn S., Shpunt A.: Typical peak sidelobe level of binary sequences. IEEE Trans. Inf. Theory 56(1), 545–554 (2010).
Antweiler M., Bömer L.: Merit factor of Chu and Frank sequences. IEE Electron. Lett. 46(25), 2068–2070 (1990).
Arasu K.T., Ding C., Helleseth T., Kumar P.V., Martinsen H.M.: Almost difference sets and their sequences with optimal autocorrelation. IEEE Trans. Inf. Theory 47(7), 2934–2943 (2001).
Baden J.M.: Efficient optimization of the merit factor of long binary sequences. IEEE Trans. Inf. Theory 57(12), 8084–8094 (2011).
Barker R.H.: Group synchronization of binary digital systems. In: Jackson W. (ed.) Communication Theory, pp. 173–187. Academic Press, New York (1953).
Beenker G.F.M., Claasen T.A.C.M., Hermens P.W.C.: Binary sequences with a maximally flat amplitude spectrum. Philips J. Res. 40(5), 289–304 (1985).
Bernasconi J.: Low autocorrelation binary sequences: statistical mechanics and configuration state analysis. J. Phys. 48(4), 559–567 (1987).
Boehmer A.M.: Binary pulse compression codes. IEEE Trans. Inf. Theory IT 13(2), 156–167 (1967).
Borwein P.: Computational Excursions in Analysis and Number Theory. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 10. Springer-Verlag, New York (2002).
Borwein P., Choi K.-K.S.: Merit factors of character polynomials. J. Lond. Math. Soc. 61, 706–720 (2000).
Borwein P.B., Ferguson R.A.: A complete description of Golay pairs for lengths up to 100. Math. Comput. 73(246), 967–985 (2004).
Borwein P., Mossinghoff M.: Rudin–Shapiro-like polynomials in \(L_4\). Math. Comput. 69(231), 1157–1166 (2000).
Borwein P., Mossinghoff M.J.: Wieferich pairs and Barker sequences, II. LMS J. Comput. Math. 17(1), 24–32 (2014).
Brauer A.: On a new class of Hadamard determinants. Math. Z. 58, 219–225 (1953).
Broughton W.J.: A note on Table I of: “Barker sequences and difference sets”. Enseign. Math. 2, 40(1–2), 105–107 (1994).
Cai Y., Ding C.: Binary sequences with optimal autocorrelation. Theor. Comput. Sci. 410(24–25), 2316–2322 (2009).
Chu D.: Polyphase codes with good periodic correlation properties. IEEE Trans. Inf. Theory IT-18(4), 531–532 (1972).
Davis J.A., Jedwab J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory 45(7), 2397–2417 (1999).
Dillon J.F., Dobbertin H.: New cyclic difference sets with Singer parameters. Finite Fields Appl. 10(3), 342–389 (2004).
Ding C., Helleseth T., Lam K.Y.: Several classes of binary sequences with three-level autocorrelation. IEEE Trans. Inf. Theory 45(7), 2606–2612 (1999).
Dmitriev D., Jedwab J.: Bounds on the growth rate of the peak sidelobe level of binary sequences. Adv. Math. Commun. 1(4), 461–475 (2007).
Ein-Dor L., Kanter I., Kinzel W.: Low autocorrelated multiphase sequences. Phys. Rev. E, 65(2), 020102.1–020102.4 (2002).
Eliahou Sh., Kervaire M.: Barker sequences and difference sets. Enseign. Math. (2), 38(3–4), 345–382 (1992).
Eliahou Sh., Kervaire M., Saffari B.: A new restriction on the lengths of Golay complementary sequences. J. Comb. Theory Ser. A 55(1), 49–59 (1990).
Eliahou Sh., Kervaire M., Saffari B.: On Golay polynomial pairs. Adv. Appl. Math. 12(3), 235–292 (1991).
Erdős, P.: Some old and new problems in approximation theory: research problems 95–1. Constr. Approx. 11(3), 419–421 (1995)
Evans R., Hollmann H.D.L., Krattenthaler Ch., Xiang Q.: Gauss sums, Jacobi sums, and \(p\)-ranks of cyclic difference sets. J. Comb. Theory Ser. A 87(1), 74–119 (1999).
Fiedler F.: Small Golay sequences. Adv. Math. Commun. 7(4), 379–407 (2013).
Fiedler F., Jedwab J., Parker M.G.: A framework for the construction of Golay sequences. IEEE Trans. Inf. Theory 54(7), 3114–3129 (2008).
Fiedler F., Jedwab J., Parker M.G.: A multi-dimensional approach to the construction and enumeration of Golay complementary sequences. J. Comb. Theory Ser. A 115(5), 753–776 (2008).
Fiedler F., Jedwab J., Wiebe A.: A new source of seed pairs for Golay sequences of length \(2^m\). J. Comb. Theory Ser. A 117(5), 589–597 (2010).
Frank R.L.: Polyphase complementary codes. IEEE Trans. Inf. Theory 26(6), 641–647 (1980).
Frank R., Zadoff S.: Phase shift pulse codes with good periodic correlation properties. IRE Trans. Inf. Theory IT-8(6), 381–382 (1962).
Fredman M.L., Saffari B., Smith B.: Polynômes réciproques: conjecture d’Erdős en norme \(L^4,\) taille des autocorrélations et inexistence des codes de Barker. C. R. Acad. Sci. Paris Ser. I Math. 308(15), 461–464 (1989).
Gibson R.G., Jedwab J.: Quaternary Golay sequence pairs II: odd length. Des. Codes Cryptogr. 59(1–3), 147–157 (2011).
Golay M.J.E.: Static multislit spectrometry and its applications to the panoramic display of infrared spectra. J. Opt. Soc. Am. 41, 468–472 (1951).
Golay M.J.E.: Complementary series. IRE Trans. Inf. Theory IT-7(2), 82–87 (1961).
Golay M.J.E.: A class of finite binary sequences with alternate autocorrelation values equal to zero. IEEE Trans. Inf. Theory IT-18(3), 449–450 (1972).
Golay M.J.E.: The merit factor of long low autocorrelation binary sequences. IEEE Trans. Inf. Theory 28(3), 543–549 (1982).
Golomb S.W.: Shift register sequences. Holden-Day Inc., San Francisco (1967).
Golomb S.W., Gong G.: Signal Design for Good Correlation. For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005).
Golomb S.W., Scholtz R.A.: Generalized Barker sequences. IEEE Trans. Inf. Theory, IT-11(4), 533–537 (1965).
Gordon B., Mills W.H., Welch L.R.: Some new difference sets. Can. J. Math. 14, 614–625 (1962).
Günther Ch., Schmidt K.-U.: Merit factors of polynomials derived from difference sets. arXiv:1503.05858 [math.CO].
Hall Jr. M.: A survey of difference sets. Proc. Am. Math. Soc. 7, 975–986 (1956).
Heimiller R.C.: Phase shift pulse codes with good periodic correlation properties. IRE Trans. Inf. Theory IT-7(4), 254–257 (1961).
Helleseth T., Kumar P.V.: Sequences with low correlation. In: Handbook of Coding Theory, vol. II, pp. 1765–1853. North-Holland, Amsterdam (1998).
Høholdt T.: The merit factor problem for binary sequences. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science, vol. 3857, pp. 51–59. Springer, Berlin (2006).
Høholdt T., Jensen H.E.: Determination of the merit factor of Legendre sequences. IEEE Trans. Inf. Theory 34(1), 161–164 (1988).
Høholdt T., Jensen H.E., Justesen J.: Aperiodic correlations and the merit factor of a class of binary sequences. IEEE Trans. Inf. Theory 31(4), 549–552 (1985).
Holzmann W.H., Kharaghani H.: A computer search for complex Golay sequences. Australas. J. Comb. 10, 251–258 (1994).
Jedwab J.: A survey of the merit factor problem for binary sequences. In: Proceedings of Sequences and Their Applications. Lecture Notes in Computer Science, vol. 3486, pp. 30–55. Springer Verlag, New York (2005).
Jedwab J.: What can be used instead of a Barker sequence? Contemp. Math. 461, 153–178 (2008).
Jedwab J., Katz D.J., Schmidt K.-U.: Advances in the merit factor problem for binary sequences. J. Comb. Theory Ser. A 120(4), 882–906 (2013).
Jedwab J., Katz D.J., Schmidt K.-U.: Littlewood polynomials with small \(L^4\) norm. Adv. Math. 241, 127–136 (2013).
Jedwab J., Parker M.G.: A construction of binary Golay sequence pairs from odd-length Barker sequences. J. Comb. Des. 17(6), 478–491 (2009).
Jedwab J., Yoshida K.: The peak sidelobe level of families of binary sequences. IEEE Trans. Inf. Theory 52(5), 2247–2254 (2006).
Jensen J.M., Jensen H.E., Høholdt T.: The merit factor of binary sequences related to difference sets. IEEE Trans. Inf. Theory 37(3), 617–626 (1991).
Jungnickel D., Pott A.: Perfect and almost perfect sequences. Discret. Appl. Math. 95(1–3), 331–359 (1999).
Kumar P.V., Scholtz R.A., Welch L.R.: Generalized bent functions and their properties. J. Comb. Theory Ser. A 40(1), 90–107 (1985).
Lander E.S.: Symmetric designs: an algebraic approach. London Mathematical Society Lecture Note Series, vol. 74. Cambridge University Press, Cambridge (1983).
Lempel A., Cohn M., Eastman W.L.: A class of balanced binary sequences with optimal autocorrelation properties. IEEE Trans. Inf. Theory IT-23(1), 38–42 (1977).
Leukhin A.N., Potekhin E.N.: Exhaustive search for optimal minimum peak sidelobe binary sequences up to length 80. In: Sequences and Their Applications. Lecture Notes in Computer Science, vol. 8865, pp. 157–169. Springer, New York (2014).
Leung K.H., Schmidt B.: The field descent method. Des. Codes Cryptogr. 36(2), 171–188 (2005).
Leung K.H., Schmidt B.: New restrictions on possible orders of circulant Hadamard matrices. Des. Codes Cryptogr. 64(1–2), 143–151 (2012).
Leung K.H., Schmidt B.: The anti-field-descent method. J. Comb. Theory Ser. A (to appear)
Littlewood J.E.: On the mean values of certain trigonometric polynomials. J. Lond. Math. Soc. 36, 307–334 (1961).
Littlewood J.E.: On the mean values of certain trigonometric polynomials II. Ill. J. Math. 6, 1–39 (1962).
Littlewood J.E.: On polynomials \(\sum ^{n}\pm z^{m}, \sum ^{n} e^{\alpha _{m}i} z^{m}, z= e^{\theta _{i}}\). J. Lond. Math. Soc. 41(1), 367–376 (1966).
Littlewood J.E.: Some Problems in Real and Complex Analysis. D. C. Heath and Co. Raytheon Education Co., Lexington (1968).
Logan B., Mossinghoff M.J.: Double Wieferich pairs and circulant Hadamard matrices. Preprint. http://academics.davidson.edu/math/mossinghoff/ (2015)
Maschietti A.: Difference sets and hyperovals. Des. Codes Cryptogr. 14(1), 89–98 (1998).
Mauduit Ch., Sárközy A.: On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith. 82(4), 365–377 (1997).
Mercer I.: Merit factor of Chu sequences and best merit factor of polyphase sequences. IEEE Trans. Inf. Theory 59(9), 6083–6086 (2013).
Mercer I.D.: Autocorrelations of random binary sequences. Comb. Probab. Comput. 15(5), 663–671 (2006).
Milewski A.: Periodic sequences with optimal properties for channel estimation and fast start-up equalization. IBM J. Res. Dev. 27(5), 426–431 (1983).
Moon J.W., Moser L.: On the correlation function of random binary sequences. SIAM J. Appl. Math. 16(12), 340–343 (1968).
Mossinghoff M.J.: Wieferich pairs and Barker sequences. Des. Codes Cryptogr. 53(3), 149–163 (2009).
Mow W.H.: A unified construction of perfect polyphase sequences. In: IEEE International Symposium on Information Theory, p. 459. IEEE, Whistler (1995).
Mow W.H.: A new unified construction of perfect root-of-unity sequences. In: IEEE 4th International Symposium on Spread Spectrum Techniques and Applications, vol.3, pp. 955–959. IEEE, Mainz (1996).
Mow W.H., Li Sh-Y.R.: Aperiodic autocorrelation and crosscorrelation of polyphase sequences. IEEE Trans. Inf. Theory 43(3), 1000–1007 (1997).
Nazarathy M., Newton S.A., Giffard R.P., Moberly D.S., Sischka F., Trutna Jr. W.R., Foster S.: Real-time long range complementary correlation optical time domain reflectometer. IEEE J. Lightwave Technol. 7(1), 24–38 (1989).
Newman D.J.: An \(L^{1}\) extremal problem for polynomials. Proc. Am. Math. Soc. 16, 1287–1290 (1965).
Newman D.J., Byrnes J.S.: The \(L^{4}\) norm of a polynomial with coefficients \(\pm 1\). Am. Math. Mon. 97, 42–45 (1990).
No J.-S., Chung H., Yun M.-S.: Binary pseudorandom sequences of period \(2^m-1\). IEEE Trans. Inf. Theory 44(3), 1278–1282 (1998).
Nowicki A., Secomski W., Litniewski J., Trots I., Lewin P.A.: On the application of signal compression using Golay’s codes sequences in ultrasonic diagnostic. Arch. Acoust. 28(4), 313–324 (2003).
Nunn C.J., Coxson G.E.: Best-known autocorrelation peak sidelobe levels for binary codes of length 71–105. IEEE Trans. Aerosp. Electron. Syst. 44(4), 392–395 (2008).
Nunn C.J., Coxson G.E.: Polyphase pulse compression codes with optimal peak and integrated sidelobes. IEEE Trans. Aerosp. Electron. Syst. 45(2), 775–781 (2009).
Ohyama N., Honda T., Tsujiuchi J.: An advanced coded imaging without side lobes. Opt. Commun. 27(3), 339–344 (1978).
Paley R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933).
Popović B.M.: Synthesis of power efficient multitone signals with flat amplitude spectrum. IEEE Trans. Commun. 39(7), 1031–1033 (1991).
Rudin W.: Some theorems on Fourier coefficients. Proc. Am. Math. Soc. 10, 855–859 (1959).
Ryser H.J.: Combinatorial Mathematics. The Carus Mathematical Monographs, No. 14. The Mathematical Association of America; Distributed by John Wiley and Sons, Inc., New York (1963).
Sarwate D.V.: An upper bound on the aperiodic autocorrelation function for a maximal-length sequence. IEEE Trans. Inf. Theory IT-30(4), 685–687 (1984).
Schmidt B.: Cyclotomic integers and finite geometry. J. Am. Math. Soc. 12(4), 929–952 (1999).
Schmidt B.: Characters and cyclotomic fields in finite geometry. Lecture Notes in Mathematics, vol. 1797. Springer-Verlag, Berlin (2002).
Schmidt K.-U.: Binary sequences with small peak sidelobe level. IEEE Trans. Inf. Theory 58(4), 2512–2515 (2012).
Schmidt K.-U.: On random binary sequences. In: Sequences and Their Applications. Lecture Notes in Computer Science, vol. 7280, pp. 303–314. Springer, Berlin (2012).
Schmidt K.-U.: On a problem due to Littlewood concerning polynomials with unimodular coefficients. J. Fourier Anal. Appl. 19(3), 457–466 (2013).
Schmidt K.-U.: The peak sidelobe level of random binary sequences. Bull. Lond. Math. Soc. 46(3), 643–652 (2014).
Schmidt K.-U., Willms J.: Barker sequences of odd length. Des. Codes. Cryptogr. (to appear)
Scholtz R.A., Welch L.R.: GMW sequences. IEEE Trans. Inf. Theory 30(3), 548–553 (1984).
Shapiro H.S.: Extremal problems for polynomials and power series. Master’s Thesis, MIT (1951).
Sidelnikov V.M.: Some \(k\)-valued pseudo-random sequences and nearly equidistant codes. Probl. Inf. Transm. 5, 12–16 (1969).
Singer J.: A theorem in finite projective geometry and some applications to number theory. Trans. Am. Math. Soc. 43(3), 377–385 (1938).
Stańczak S., Boche H.: Aperiodic properties of generalized binary Rudin–Shapiro sequences and some recent results on sequences with a quadratic phase function. In Proceedings of the IEEE International Zurich Seminar on Broadband Communications, pp. 279–286 (2000).
Turyn R.: Optimum codes study. Technical Report, Sylvania Electronic Systems, January 1960. Final report, Contract AF19(604)-5473.
Turyn R.: On Barker codes of even length. Proc. IEEE 51(9), 1256–1256 (1963).
Turyn R.: The correlation function of a sequences of roots of 1. IEEE Trans. Inf. Theory IT-13(3), 524–525 (1967).
Turyn R., Storer J.: On binary sequences. Proc. Am. Math. Soc. 12(3), 394–399 (1961).
Turyn R.J.: Character sums and difference sets. Pac. J. Math. 15(1), 319–346 (1965).
Turyn R.J.: Sequences with small correlation. In: Mann H.B. (ed.) Error Correcting Codes. Wiley, New York (1968).
Turyn R.J.: Hadamard matrices, Baumert–Hall units, four-symbol sequences, pulse compression, and surface wave encodings. J. Comb. Theory Ser. A 16, 313–333 (1974).
Acknowledgments
I would like to thank Christian Günther, Jonathan Jedwab, Dieter Jungnickel, and Peter Wild for some careful comments on a draft of this survey.
Author information
Authors and Affiliations
Corresponding author
Additional information
This is one of several papers published in Designs, Codes and Cryptography comprising the 25th Anniversary Issue.
Rights and permissions
About this article
Cite this article
Schmidt, KU. Sequences with small correlation. Des. Codes Cryptogr. 78, 237–267 (2016). https://doi.org/10.1007/s10623-015-0154-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-015-0154-7