Skip to main content
Log in

On the geometric constructions of optimal linear codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper we generalize the construction of Griesmer codes of Belov type to construct \([g_q(k,d)+t,k,d]_q\) codes with an integer \(t \ge 1\), where \(g_q(k,d)=\sum _{i=0}^{k-1} \left\lceil d/q^i \right\rceil \). This leads to the construction of several codes of length \(g_q(k,d)+1\), many of which are optimal. We also construct a q-divisible \([q^2+q,5,q^2-q]_q\) code through projective geometry. As a projective dual of the code, we construct optimal codes, giving \(n_q(5,d)=g_q(5,d)+1\) for \(q^4-q^3-q^2+1 \le d \le q^4-q^3-2q\), \(q \ge 3\), where \(n_q(k,d)\) is the minimum length n for which an \([n,k,d]_q\) code exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball S.: Table of bounds on three dimensional linear codes or \((n,r)\) arcs in PG\((2,q)\). http://www-ma4.upc.es/~simeon/codebounds.html.

  2. Belov B.I., Logachev V.N., Sandimirov V.P.: Construction of a class of linear binary codes achieving the Varshamov–Griesmer bound. Probl. Inf. Transm. 10(3), 211–217 (1974).

  3. Bouyukliev I., Kageyama Y., Maruta T.: On the minimum length of linear codes over \(\mathbb{F}_5\). Discret. Math. 338, 938–953 (2015).

  4. Brouwer A.E., van Eupen M.: The correspondence between projective codes and 2-weight codes. Des. Codes Cryptogr. 11, 261–266 (1997).

  5. Cheon E.J.: On the upper bound of the minimum length of 5-dimensional linear codes. Aust. J. Comb. 37, 225–232 (2007).

  6. Cheon E.J.: A class of optimal linear codes of length one above the Griesmer bound. Des. Codes Cryptogr. 51, 9–20 (2009).

  7. Cheon E.J.: The non-existence of Griesmer codes with parameters close to codes of Belov type. Des. Codes Cryptogr. 61, 131–139 (2011).

  8. Cheon E.J., Maruta T.: On the minimum length of some linear codes. Des. Codes Cryptogr. 43, 123–135 (2007).

  9. Cheon E.J., Kato T., Kim S.J.: Nonexistence of a \([g_q(5, d),5, d]_q\) code for \(3q^4-4q^3-2q+1 \le d \le 3q^4-4q^3-q\). Discret. Math. 308, 3082–3089 (2008).

  10. Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: On sharply transitive sets in \(\text{PG}(2, q)\). Innov. Incid. Geom. 6–7, 139–151 (2009).

  11. Dodunekov S.M.: Optimal linear codes. Doctor Thesis, Sofia (1985).

  12. Hill R.: Optimal linear codes. In: Mitchell C. (ed.) Cryptography and Coding II, pp. 75–104. Oxford University Press, Oxford (1992).

  13. Hill R., Kolev E.: A survey of recent results on optimal linear codes. In: Holroyd F.C., et al. (eds.) Combinatorial Designs and Their Applications, pp.127–152. Chapman and Hall/CRC Press Research Notes in Mathematics. CRC Press, Boca Raton (1999).

  14. Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Clarendon Press, Oxford (1998).

  15. Hirschfeld J.W.P., Thas J.A.: General Galois Geometries. Clarendon Press, Oxford (1991).

  16. Kageyama Y., Maruta T.: On the construction of Griesmer codes of dimension 5. Des. Codes Cryptogr. 75, 277–280 (2015).

  17. Klein A., Metsch K.: Parameters for which the Griesmer bound is not sharp. Discret. Math. 307, 2695–2703 (2007).

  18. Kumegawa K., Maruta T.: Nonexistence of some Griesmer codes over \(\mathbb{F}_q\). Discret. Math. 339, 515–521 (2016).

  19. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20. Cambridge University Press, Cambridge (1997).

  20. Maruta T.: On the achievement of the Griesmer bound. Des. Codes Cryptogr. 12, 83–87 (1997).

  21. Maruta T.: On the minimum length of q-ary linear codes of dimension four. Discret. Math. 208(209), 427–435 (1999).

  22. Maruta T.: On the nonexistence of q-ary linear codes of dimension five. Des. Codes Cryptogr. 22, 165–177 (2001).

  23. Maruta T.: Construction of optimal linear codes by geometric puncturing. Serdica J. Comput. 7, 73–80 (2013).

  24. Maruta T.: Griesmer bound for linear codes over finite fields. http://www.geocities.jp/mars39geo/griesmer.htm

  25. Maruta T., Oya Y.: On optimal ternary linear codes of dimension 6. Adv. Math. Commun. 5, 505–520 (2011).

  26. Maruta T., Landjev I.N., Rousseva A.: On the minimum size of some minihypers and related linear codes. Des. Codes Cryptogr. 34, 5–15 (2005).

  27. Takenaka M., Okamoto K., Maruta T.: On optimal non-projective ternary linear codes. Discret. Math. 308, 842–854 (2008).

Download references

Acknowledgments

We would like to thank the referees for their careful reading and helpful comments. The second author was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Maruta.

Additional information

Communicated by I. Landjev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kageyama, Y., Maruta, T. On the geometric constructions of optimal linear codes. Des. Codes Cryptogr. 81, 469–480 (2016). https://doi.org/10.1007/s10623-015-0167-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0167-2

Keywords

Mathematics Subject Classification