Abstract
Maximum distance separable (MDS) convolutional codes are characterized through the property that the free distance meets the generalized Singleton bound. The existence of free MDS convolutional codes over \({\mathbb {Z}}_{p^{r}}\) was recently discovered in Oued and Sole (IEEE Trans Inf Theory 59(11):7305–7313, 2013) via the Hensel lift of a cyclic code. In this paper we further investigate this important class of convolutional codes over \({\mathbb {Z}}_{p^{r}}\) from a new perspective. We introduce the notions of p-standard form and r-optimal parameters to derive a novel upper bound of Singleton type on the free distance. Moreover, we present a constructive method for building general (non necessarily free) MDS convolutional codes over \({\mathbb {Z}}_{p^{r}}\) for any given set of parameters.
Similar content being viewed by others
References
Almeida P., Napp D., Pinto R.: A new class of superregular matrices and MDP convolutional codes. Linear Algebr. Appl. 439(7), 2145–2157 (2013).
Ashikhmin A., Zyablov V.: Samples of unit-memory codes over \({\mathbb{Z}}_{4}\). In: Proceedings of IEEE International Workshop on Information Theory, Moscow, Russia, pp. 119–121 (1994).
Calderbank A.R., Sloane N.J.A.: Modular and p-adic cyclic codes. Des. Codes Cryptogr. 6(1), 21–35 (1995).
Chang S.K., Gill A.: Algorithmic solution of the change-making problem. Assoc. Comput. Mach. 17(1), 113–122 (1970).
Chen C.J., Chen T.Y., Loeliger H.A.: Construction of linear ring codes for 6 PSK. IEEE Trans. Inf. Theory 40(2), 563–566 (1994).
Fagnani F., Zampieri S.: Canonical kernel representations for behaviors over finite abelian groups. Syst. Control Lett. 32(5), 271–282 (1997).
Fagnani F., Zampieri S.: System-theoretic properties of convolutional codes over rings. IEEE Trans. Inf. Theory 47(6), 2256–2274 (2001).
Greferath M., Schmidt S.E.: Finite-ring combinatorics and macwilliams’ equivalence theorem. J. Comb. Theory Ser. A 92(1), 17–28 (2000).
Guardia G.G.L.: On classical and quantum mds-convolutional bch codes. IEEE Trans. Inf. Theory 60(1), 304–312 (2014).
Guendaa K., Gulliver T.A.: MDS and self-dual codes over rings. Finite Fields Appl.18(6), 1061–1075 (2012).
Johannesson R., Wittenmark E.: Two 16-state, rate r=2/4 trellis codes whose free distances meet the heller bound. IEEE Trans. Inf. Theory 44(4), 1602–1604 (1998).
Johannesson R., Zigangirov K.S.: Fundamentals of Convolutional Coding. IEEE Press, New York (1999).
Johannesson R., Wan Z., Wittenmark E.: Some structural properties of convolutional codes over rings. IEEE Trans. Inf. Theory 44(2), 839–845 (1998).
Kötter R., Dettmar U., Sorger U.K.: On the construction of trellis codes based on (P)UM codes over \({\mathbb{Z}}_4\). Probl. Inf. Transm. 31(2), 154–161 (1995).
Kuijper M., Pinto R.: Minimal trellis construction for finite support convolutional ring codes. Lecture Notes in Computer Science. Coding Theory Appl. 5228, 95–106 (2008).
Kuijper M., Pinto R.: On minimality of convolutional ring encoders. IEEE Trans. Autom. Control 55(11), 4890–4897 (2009).
Kuijper M., Pinto R., Polderman J.W.: The predictable degree property and row reducedness for systems over a finite ring. Linear Algebr. Appl. 425(2–3), 776–796 (2007).
Massey J.L., Mittelholzer T.: Convolutional codes over rings. In: Proceedings of 4th Joint Swedish-Soviet International Workshop Information Theory, pp. 14–18 (1989).
McDonald B.: Finite Rings with Identity. Marcel Dekker, New York (1974).
McEliece R.J.: The algebraic theory of convolutional codes. In: Pless V., Huffman W. (eds.) Handbook of Coding Theory, vol. 1, pp. 1065–1138. Elsevier Science Publishers, Amsterdam (1998).
Napp D., Smarandache R.: Constructing strongly mds convolutional codes with maximum distance profile. Adv. Math. Commun. 10(2), (2016). doi:10.3934/amc.2016005.
Napp D., Perea C., Pinto R.: Input-state-output representations and constructions of finite support 2D convolutional codes. Adv. Math. Commun. 4(4), 533–545 (2010).
Norton G.: On minimal realization over a finite chain ring. Des Codes Cryptogr. 16(2), 161–178 (1999).
Norton G., Salagean A.: On the key equation over a commutative ring. Des Codes Cryptogr. 20(2), 125–141 (2000).
Norton G.H., Salagean A.: On the hamming distance of linear codes over a finite chain ring. IEEE Trans. Inf. Theory 46(3), 1060–1067 (2001).
Oued M.E., Sole P.: MDS convolutional codes over a finite ring. IEEE Trans. Inf. Theory 59(11), 7305–7313 (2013).
Rosenthal J., Smarandache R.: Maximum distance separable convolutional codes. Appl. Algebr. Eng. Commun. Comput. 10(1), 15–32 (1999).
Rosenthal J., Schumacher J.M., York E.V.: On behaviors and convolutional codes. IEEE Trans. Autom. Control 42(6, part 1), 1881–1891 (1996).
Smarandache R., Gluesing-Luerssen H., Rosenthal J.: Constructions for MDS-convolutional codes. IEEE Trans. Autom. Control 47(5), 2045–2049 (2001).
Sole P., Sison V.: Quaternary convolutional codes from linear block codes over galois rings. IEEE Trans. Inf. Theory 53, 2267–2270 (2007).
Vazirani V., Saran H., Rajan B.: An efficient algorithm for constructing minimal trellises for codes over finite abelian groups. IEEE Trans. Inf. Theory 42, 1839–1854 (1996).
Acknowledgments
This work was supported in part by the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Winterhof.
Rights and permissions
About this article
Cite this article
Napp, D., Pinto, R. & Toste, M. On MDS convolutional codes over \({\mathbb {Z}}_{p^{r}}\) . Des. Codes Cryptogr. 83, 101–114 (2017). https://doi.org/10.1007/s10623-016-0204-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-016-0204-9