Skip to main content
Log in

New optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code-division multiple-access network for 2-dimensional image transmission. There is a one-to-one correspondence between an \((m, n, w, \lambda )\)-OOSPC and a \((\lambda +1)\)-(mnw, 1) packing design admitting an automorphism group isomorphic to \(\mathbb {Z}_m\times \mathbb {Z}_n\). In 2010, Sawa gave a construction of an (mn, 4, 2)-OOSPC from a one-factor of Köhler graph of \(\mathbb {Z}_m\times \mathbb {Z}_n\) which contains a unique element of order 2. In this paper, we study the existence of one-factor of Köhler graph of \(\mathbb {Z}_m\times \mathbb {Z}_n\) having three elements of order 2. It is proved that there is a one-factor in the Köhler graph of \(\mathbb {Z}_{2^{\epsilon }p}\times \mathbb {Z}_{2^{\epsilon '}}\) relative to the Sylow 2-subgroup if there is an S-cyclic Steiner quadruple system of order 2p, where \(p\equiv 5\pmod {12}\) is a prime and \(1\le \epsilon ,\epsilon '\le 2\). Using this one-factor, we construct a strictly \(\mathbb {Z}_{2^{\epsilon }p}\times \mathbb {Z}_{2^{\epsilon '}}\)-invariant regular \(G^*(p,2^{\epsilon +\epsilon '},4,3)\) relative to the Sylow 2-subgroup. By using the known S-cyclic SQS(2p) and a recursive construction for strictly \(\mathbb {Z}_{m}\times \mathbb {Z}_{n}\)-invariant regular G-designs, we construct more strictly \(\mathbb {Z}_{m}\times \mathbb {Z}_{n}\)-invariant 3-(mn, 4, 1) packing designs. Consequently, there is an optimal \((2^{\epsilon }m,2^{\epsilon '}n,4,2)\)-OOSPC for any \(\epsilon ,\epsilon '\in \{0,1,2\}\) with \(\epsilon +\epsilon '>0\) and an optimal (6m, 6n, 4, 2)-OOSPC where mn are odd integers whose all prime divisors from the set \(\{p\equiv 5\pmod {12}:p\) is a prime, \(p<\)1,500,000}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alderson T.L., Mellinger K.E.: 2-Dimensional optical orthogonal codes from singer groups. Discret. Appl. Math. 157, 3008–3019 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao J., Ji L.: The completion determination of optimal \((3,4)\)-packings. Des. Codes Cryptogr. 77, 217–229 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao J., Ji L.: Constructions of strictly \(m\)-cyclic and semi-cyclic \(H(m, n, 4, 3)\). J. Comb. Des. 24, 249–264 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bitan S., Etzion T.: The last packing number of quadruple, and cyclic SQS. Des. Codes Cryptogr. 3, 283–313 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  5. Brickell E.F., Wei V.K.: Optical orthogonal codes and cyclic block designs. Congr. Numer. 58, 175–192 (1987).

    MathSciNet  MATH  Google Scholar 

  6. Cao H., Wei R., Su Y.: Combinatorial constructions for optimal optical two-dimensional orthogonal codes. IEEE Trans. Inf. Theory 55, 1387–1394 (2009).

    Article  MATH  Google Scholar 

  7. Chen J., Ji L., Li Y.: Combinatorial constructions of optimal \((m, n,4,2)\) optical orthogonal signature pattern codes. arXiv:1511.09289v2

  8. Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inf. Theory 35, 595–604 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  9. Colbourn C.J., Dinitz J.H., Stinson D.R.: Applications of combinatorial designs to communications, cryptography, and networking. In: London Mathematical Society Lecture Note Series, vol 267, pp. 37–100 (1999).

  10. Feng T., Chang Y.: Combinatorial constructions for two-dimensional optical orthogonal codes with \(\lambda =2\). IEEE Trans. Inf. Theory 57, 6796–6819 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng T., Chang Y., Ji L.: Constructions for strictly cyclic \(3\)-designs and applications to optimal OOCs with \(\lambda =2\). J. Comb. Theory (A) 115, 1527–1551 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. Fitting F.: Zyklische Lösungen des Steiner’schen Problems. Nieuw Arch. Wisk. 11(2), 140–148 (1915).

  13. Hanani H.: On quadruple systems. Can. J. Math. 12, 145–157 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  14. Hassan A.A., Hershey J.E., Riza N.A.: Spatial optical CDMA. IEEE J. Sel. Areas Commun. 13, 609–613 (1995).

    Article  Google Scholar 

  15. Huang Y., Chang Y.: Two classes of optimal two-dimensional OOCs. Des. Codes Cryptogr. 63, 357–363 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson S.M.: A new upper bound for error-correcting codes. IEEE Trans. Inf. Theory 8, 203–207 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  17. Kitayama K.: Novel spatial spread spectrum based fiber optic CDMA networks for image transmission. IEEE J. Sel. Areas Commun. 12, 762–772 (1994).

    Article  Google Scholar 

  18. Köhler E.: Zyklische Quadrupelsysteme, Abh. Math. Sem. Univ. Hamburg XLVIII, 1–24 (1978).

  19. Lu X., Jimbo M.: Affine-invariant strictly cyclic Steiner quadruple systems. Des. Codes Cryptogr. doi:10.1007/s10623-016-0201-z.

  20. Maric S.V., Lau V.K.N.: Multirate fiber-optic CDMA: system design and performance analysis. J. Lightwave Technol. 16, 9–17 (1998).

    Article  Google Scholar 

  21. Mills W.H.: On the covering of triples by quadruples. Congr. Numer. 10, 563–581 (1974).

    MathSciNet  MATH  Google Scholar 

  22. Munemasa A., Sawa M.: Steiner quadruple systems with point-regular abelian automorphism groups. J. Stat. Theory Pract. 6, 97–128 (2012).

    Article  MathSciNet  Google Scholar 

  23. Omrani R., Garg G., Kumar P.V., Elia P., Bhambhani P.: Large families of optimal two-dimensional optical orthogonal codes. IEEE Trans. Inf. Theory 58, 1163–1185 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. Pan R., Chang Y.: Further results on optimal \((m, n, 4, 1)\) optical orthogonal signature pattern codes. Sci. Sin. Math. 44, 1141–1152 (2014).

    Article  Google Scholar 

  25. Pan R., Chang Y.: \((m, n, 3, 1)\) Optical orthogonal signature pattern codes with maximum possible size. IEEE Trans. Inf. Theory 61, 1139–1148 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. Piotrowski W.: Untersuchungen \(\ddot{u}\)ber S-zyklische quadrupelsysteme, Dissertation, University of Hamburg (1985).

  27. Salehi J.A., Brackett C.A.: Code-division multiple access techniques in optical fiber networks: part I and part II. IEEE Trans. Commun. 37, 824–842 (1989).

    Article  Google Scholar 

  28. Sawa M.: Optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4. IEEE Trans. Inf. Theory 56, 3613–3620 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  29. Sawa M., Kageyama S.: Optimal optical orthogonal signature pattern codes of weight 3. Biom. Lett. 46, 89–102 (2009).

    Google Scholar 

  30. Siemon H.: Some remarks on the construction of cyclic Steiner quadruple systems. Arch Math. 49, 166–178 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  31. Siemon H.: Infinite families of strictly cyclic Steiner quadruple systems. Discret. Math. 77, 307–316 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  32. Siemon H.: On the existence of cyclic Steiner quadruple systems SQS\((2p)\). Discret. Math. 97, 377–385 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  33. Siemon H.: A number theoretic conjecture and the existence of \(S\)-cyclic Steiner quadruple systems. Des. Codes Cryptogr. 13, 63–94 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  34. Stinson D.R., Wei R., Yin J.: Packings. In: Colbourn C.J., Dinitz J.H. (eds.) The CRC Handbook of Combinatorial Designs, pp. 550–556. CRC Press, Boca Raton (2007).

    Google Scholar 

  35. Sun S., Yin H., Wang Z., Xu A.: A new family of 2-D optical orthogonal codes and analysis of its performance in optical CDMA access networks. J. Lightwave Technol. 24, 1646–1653 (2006).

    Article  Google Scholar 

  36. Yang G.C., Kwong W.C.: Two-dimensional spatial signature patterns. IEEE Trans. Commun. 44, 184–191 (1996).

    Article  Google Scholar 

  37. Yang G.C., Kwong W.C.: Performance comparison of multiwavelength CDMA and WDMA + CDMA for fiber-optic networks. IEEE Trans. Commun. 45, 1426–1434 (1997).

    Article  Google Scholar 

  38. Zhuralev A.A., Keranen M.S., Kreher D.L.: Small group divisible Steiner quadruple systems. Electron. J. Comb. 15(1) Research paper 40 (2008).

Download references

Acknowledgements

The authors would like to thank the referees for careful check and many helpful comments. Research supported by NSFC Grant 11431003 and a project funded by the priority academic program development of Jiangsu higher education institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Ji.

Additional information

Communicated by D. Jungnickel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Ji, L. & Li, Y. New optical orthogonal signature pattern codes with maximum collision parameter 2 and weight 4. Des. Codes Cryptogr. 85, 299–318 (2017). https://doi.org/10.1007/s10623-016-0310-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-016-0310-8

Keywords

Mathematics Subject Classification

Navigation